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1 Abstract

Metabolomics is the study of all metabolites and their dynamics in a biological system by performing
qualitative and quantitative analyses. The data is often used to study the metabolic basis of observed phenotypes,
to understand the response mechanisms under different physical, chemical, or pathological conditions, and to
evaluate safety of food and drugs.

Untargeted metabolomics is a common approach to metabolomics research. The main idea is to perform
qualitative and quantitative analysis, and identify statistically significant differential metabolites between dif-
ferent groups.

（1）For this project, 20 samples were selected and divided into 4 groups for metabolomics study.

Table 1: Number of identified metabolites

- All T3_positive T3_negative

Number of metabolites identified 4860 3166 1694

Number of secondary metabolites identified 3876 2353 1523

Number of identified metabolites:Final_report/1.Data_Assess/metabolitesCount.xlsx

（2）The composition of metabolites is dependent on the sample that changes with experimental conditions.
The metabolite composition ratio analysis examines the distribution of major metabolites in the samples. The
following ring diagram shows the proportion of each metabolite class:
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Fig 1: Ring diagram of metabolite categories

Note: Each color represents a category of metabolites, and the area of the color block

indicates the proportion of that category.

Ring diagram of metabolite categories:Final_report/1.Data_Assess/*/Class_Count/*_Class_Count_Ring.*

（3）Results of differential metabolite analysis:

Table 2: Number of differential metabolites

group total down up

C_vs_A 1068 681 387

D_vs_B 1455 905 550

Number of differentialmetabolites:Final report/2.Basic_Analysis/Difference_analysis/sigMetabolitesCount.xlsx.

2 The experimental process

Ultra-performance liquid chromatography-tandemmass spectrometry (UPLC-MS/MS) is a technique used
for accurate qualitative and quantitative analysis for various compounds. The main purpose of metabolomics
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analysis is to detect and identify metabolites with important biological significance by differentiate statistically
significant differential metabolites between sample groups. The overall process is as follows:

Fig 2: Flow chart of metabolomics analysis

2.1 Sample information

Each sample group and corresponding sample information are as follows:
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Table 3: Table of sample information

Species Tissue Sample Group

- - A1 A

- - A2 A

- - A3 A

- - A4 A

- - B1 B

- - B2 B

- - B3 B

- - B4 B

- - C1 C

- - C2 C

- - C3 C

- - C4 C

- - C5 C

- - C6 C

- - D1 D

Table of sample information:Final report/1.Data_Assess/sample_info.xlsx

2.2 Reagents and instruments

Table 4: Information of reagents

Compound CAS Purity Brand Item No.

Methanol 67-56-1 more than 99.9% Thermo Fisher A452-4

Acetonitrile 75-05-8 99.95% Thermo Fisher T001014000

Acetic Acid 64-19-7 more than 99.7% Thermo Fisher A35500

Ammonium formate 540-69-2 more than 99.0% Sigma 70221

Ammonium hydroxide solution(25%) 1336-21-6 - Sigma 543830

Formic Acid 64-18-6 97.5-98.5% Sigma 00940

Standard - more than 98% isoreag/TRC/TCI/Sigma -
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Table 5: Information of instruments

Name Instrument Brand Address

Mass Spectrometer TripleTOF 6600+ SCIEX California, USA

UHPLC ExionLC AD SCIEX California, USA

Centrifuge 5430R Eppendorf Hamburg, Germany

Vortex mixer MI0101002 HFour E’s Guangzhou, China

Electronic balance(1/100000) AS60/220.R2 Plus Radwag Poland

Centrifugal concentrator CentriVap LABCONCO Missouri Kansas, USA

Ultrasonic cleaner CD-F15 Olenyer China

Pipette Research plus Eppendorf Hamburg,Germany

Automatic workstation Biomek i5 Beckman Coulter California, USA

Uniform-Seal Heat Sealer FM 5200 foodsaver California, USA

2.3 Sample extraction process

2.3.1 Solid samples

Samples stored at -80 °C was thawed on ice and homogenized in a ball-mill grinder at 30 Hz for 20 s. 150
μL solution (Methanol : Water = 7:3, V/V) containing internal standard was mixed with the ground sample and
mixed in a shaker at 2500 rpm for 5 min. The mixture was placed on ice for 15 min and centrifuged at 12000
rpm for 10 min (4 °C). 150 μL of the supernatant was collected and placed in -20 °C for 30 min. The sample
was then centrifuged at 12000 rpm for 3 min (4 °C). A 120 μL aliquot of the supernatant was used for LC-MS
analysis.

2.4 Chromatography-mass spectrometry acquisition conditions

2.4.1 Liquid phase conditions (T3)

Chromatographic column: Waters ACQUITY Premier HSS T3 Column 1.8 µm, 2.1 mm * 100 mm

Mobile phase A: ultrapure water (0.1 % formic acid added)

Mobile phase B: acetonitrile (0.1 % formic acid added)

Column temperature: 40 °C; Flow rate: 0.40 mL/min: Injection volume: 2 uL
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Table 6: Elution gradient for T3

Time (min) A (%) B (%)

0.0 95 5

11.0 10 90

12.0 10 90

12.1 95 5

14.0 95 5

2.4.2 Mass spectrum conditions

Table 7: Mass spectrum conditions for AB Sciex TripleTOF 6600

Parameter ESI+ ESI-

Duration (min) 14 14

IonSpray Voltage (V) 5500 -4500

Temperature (°C) 550 450

Ion Source Gas1 (psi) 50 50

Ion Source Gas2 (psi) 60 60

Curtain Gas (psi) 35 35

Declustering Potential (V) 60 -60

MS1 Collision Energy (V) 10 -10

MS2 Collision Energy (V) 30 -30

Collision Energy Spread (V) 15 15

MS1 TOF Masses (Da) 50~1000 50~1000

MS2 TOF Masses (Da) 25~1000 25~1000

MS1 Accumulation time (s) 0.2 0.2

MS2 Accumulation time (s) 0.05 0.05

Candidate ions 12 12

2.5 Data preprocessing

The original data file acquired by LC-MS was converted to mzXML format by ProteoWizard. Peak extrac-
tion, peak alignment and retention time correction were performed by XCMS program. The peaks with missing
rate >50% in each group of samples were filtered. The blank values were filled with KNN, and the peak area was
corrected by SVR method. The metabolites were annotated by searching the MetwareBio’s in-house database,
integrated public database, prediction database and metDNA. Finally, substances with a comprehensive iden-
tification score above 0.7 and a CV value of QC samples less than 0.3 were extracted, and then positive and
negative mode were combined (substances with the highest qualitative grade and the lowest CV value were
retained) to obtain the ALL_sample_data file.
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3 Data evaluation

3.1 Quality control sample analysis

A quality control (QC) sample was prepared from a mixture of all sample extracts to examine the repro-
ducibility of the entire metabolomics process. During data collection, one quality control sample was inserted
for every 10 test samples.

3.1.1 Total ion current diagram

Reproducibility of metabolite extraction and detection process was assessed by analyzing overlapping total
ion flow diagram (TIC diagram) from different QC samples. High overlapping rate of TIC diagrams indicates
high stability of the instruments throughout the data acquisition process.

(a) Demo_neg_QC_TIC (b) Demo_pos_QC_TIC

Fig 3: TIC overlap diagram detected by QC sample essence spectrum

Note: Superimposed spectrum from different QC samples. The results showed that

the spectrum of total ion flowwas highly consistent indicating that the signal stability

was good when the same sample was detected at different times by mass spectrome-

try. N stands for negative ion mode and P stands for positive ion mode.

TIC overlap diagram detected byQC sample essence spectrum:Final report/1.Data_Assess/*/QC/*_*_QC_TIC.png
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3.1.2 Peak appearance of internal standards in blank samples

Blank samples were interspersed throughout the experiment, and their peaks can reflect whether there are
compound residues from the detection process. The figure below shows that no obvious internal standard peaks
were detected in the blank samples, indicating that possibility of cross-contamination between the samples is
minimal.

Fig 4: EIC diagram of internal label in blank sample

Note: The signals in the above EIC graphs are all noise peaks, and the internal stan-

dard substance has no obvious signal peaks at the corresponding time.

EIC diagram of internal label in blank sample:Final_report/1.Data_Assess/*/QC/*_*_BLANK_EIC.png

3.1.3 Correlation analysis of QC samples

Pearson’s correlation analysis was performed on the QC samples. The higher the correlation between QC
samples (| r | closer to 1) means that the stability of the entire detection process is optimal.
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Fig 5: Plot of QC sample correlation

Note: The bottom left square of the diagonal line is the correlation scatter plot of the

corresponding QC samples. The horizontal and vertical coordinates are the metabo-

lite content (for Log processing), and each point in the plot represents onemetabolite.

The upper right square of the diagonal line is the Pearson correlation coefficient of

the corresponding QC samples.

Plot of QC sample correlation:Final report/1.Data_Assess/*/QC/*_QC_correlation.*

3.1.4 Stability of internal standards in QC samples

Internal standards with known concentrations were added to the QC samples for assessing variations be-
tween samples. The smaller the variation (CV ≤ 15%), the more stable the detection process and the higher the
data quality.

Table 8: Stability of internal standards in QC samples

Index Q1 (Da) RT (min) CV

MWS04127 195.0449 0.80 0.0296

MWS1055 126.0608 4.46 0.0367

MWS04187 208.1136 2.52 0.0409

MWS4243 198.0324 2.61 0.0442
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Stability of internal standards in QC samples:Final_report/1.Data_Assess/*/QC/*_internal_standard.xlsx

3.1.5 CV value distribution of all samples

The Coefficient of Variation (CV) value is the ratio between the standard deviation of the original data
and the mean of the original data, which can reflect the degree of data dispersion. The Empirical Cumulative
Distribution Function (ECDF) was used to analyze the frequency of compound CVs that is smaller than the
reference value. The higher the proportion of compounds with low CV value in the QC samples, the more
stable the experimental data. As a rule of thumb, the proportion of compounds with CV value less than 0.5 in
the QC samples is higher than 85 % indicates that the experimental data is relatively stable. The proportion of
compounds with CV value less than 0.3 in the QC samples is higher than 75 % indicates that the experimental
data is very stable.

Fig 6: CV distribution of each group

Note: the X-axis represents the CV value, the Y-axis represents the proportion of

metabolites with CV value less than a corresponding reference value. Different col-

ors represent different sample groups. Mix indicates QC samples. The two dash

lines on X-axis correspond to 0.3 and 0.5; the two dash lines on Y-axis correspond

to 75 % and 85 % (If there is only one sample in the group, the CV value cannot be

calculated).
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CV distribution of each group:Final report/1.Data_Assess/*/QC/*_CV_ECDF.*

3.2 Principal Component Analysis (PCA)

3.2.1 Principles of principal component analysis

Multivariate statistical analysis can simplify complex high-dimensional data while preserving the original
information to the maximum extent by establishing a reliable mathematical model to summarize the charac-
teristics of the metabolic spectrum. Among them, Principal Component Analysis (PCA) is an unsupervised
pattern recognition method for statistical analysis of multidimensional data. Through orthogonal transforma-
tion, a group of variables that may be correlated are converted into a group of linear unrelated variables that
are called principal components. This method is used to study how a few principal components may reveal the
internal structure of between multiple variables, while keeping the original variable information (Eriksson et al.,
2006). The first principal component (PC1) represents the most variable features in the multidimensional data
matrix, PC2 represents the second most variable feature in the data, and so on. prcomp function of R software
(www.r-project.org/) was used with parameter scale=True indicating unit variance Scaling (UV) for normalizing
the data. See appendix for details of PCA calculation.

3.2.2 Principal component analysis of the sample populations

Principal component analysis (PCA) was performed on all the samples (including QC samples) to examine
the overall metabolic differences between each group and the variation between samples within a group. QC is
the Quality control sample mentioned above. PCA plot for the first two principal components is as follows:
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Fig 7: PCA score dia-

gram of quality spectrum data of each group of samples and quality control samples

Note: PC1 represents the first principal component and PC2 represents the second

principal component. Percentage represents the interpretation rate of the principal

component to the data set. Each dot in the figure represents a sample, and samples

in the same group are indicated in the same color.

Principal component analysis of population sample:Final_report/1.Data_Assess/*/pca/

3.2.3 Principal component univariate statistical process control

We plotted the sample control diagram based on principle component analysis results. Each point in the
control chart represents a sample, and the X-axis is the injection order of the sample. Due to changes in the
instrument, the points on the chart may fluctuate up and down. Generally, PC1 of the QC sample should be
within 3 standard deviations (SD) from the normal range.
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Fig 8: PC1 variation diagram of all the sample

Note: In the figure, the X-axis is the injection order of the sample, and the Y-axis

reflects the PC1 value. The yellow and red lines define plus orminus 2 and 3 standard

deviations respectively. The green dots represent QC samples and the black dots

represent test samples.

PC1 control diagram of population sample:Final_report/1.Data_Assess/*/pca/*_PC1_QCC.*

3.3 Hierarchical Cluster Analysis (HCA)

3.3.1 Principles of cluster analysis

Hierarchical Cluster Analysis (HCA) is a type of multivariate statistical analysis method. The samples
are classified according to their features such that highest homogeneity is achieved between sample from the
same group and highest heterogeneity is achieved between samples from different groups. In this report, the
compound quantification data was normalized (Unit Variance Scaling, UV Scaling) and heatmaps were drawn
by R software Pheatmap package. Hierarchical Cluster Analysis (HCA) was used to cluster the samples.
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3.3.2 Hierarchical Cluster Analysis results

Fig 9: Sample clustering diagram

Note: X-axis indicates the sample name and the Y-axis are the metabolites. Group

indicates sample groups. The different colors are the results after standardization

of the relative contents (red represents high content, green represents low content).

_all_heatmap_class: Heatmap by metabolites classification, Class represents the

first-level classification of metabolites. _all_heatmap_col-row_cluster: clustering

analysis is performed for both metabolites and samples, the clustering line on the

left side of the figure is the metabolite clustering line, and the clustering line on the

top of the figure is the sample clustering line. _all_heatmap_row_cluster” clustering

analysis is performed for metabolites only, the clustering line on the left side of the

figure is the metabolite clustering line.

Clustering analysis result:Final_report/1.Data_Assess/*/heatmap/
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4 Analysis results

4.1 Principal component analysis of sample groups

Principal component analysis was first performed on each pair of sample groups to examine the degree of
variation between different groups and between samples within the group.

Fig 10: Principal component analysis of different groups

Note: Each group has a PCA plot, PC1 represents the first principal component,

PC2 represents the second principal component, and the percentages on the axis

represents the interpretation rate of the principal component to the data set. Each dot

in the figure represents a sample, samples in the same Group are represented by the

same color, and Group is a grouping.

The three-dimensional PCA result is shown in the figure below:
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Fig 11: Three-dimensional PCA plot of different groups

Note: PC1 represents the first principal component, PC2 represents the second prin-

cipal component, and PC3 represents the third principal component.

The explainable variation of the first five principal components is shown in the figure below:
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Fig 12: The explainable variation of the first five principal components

Note: The X-axis represents each principal component, the Y-axis represents the

explainable variation, the left figure represents the cumulative explainable variation,

and the right figure represents the explainable variation of each principal component.

Principal component analysis of different groups:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/pca/

4.2 Discriminant Analysis by Orthogonal Partial Least Squares (OPLS-DA)

PCA analysis is often insensitive to variables with small correlation. In contrast, partial least squares-
discriminant analysis (PLS-DA) is a multivariate statistical analysis method with supervised pattern recogni-
tion, in which components in independent variable X and dependent variable Y are extracted to calculate the
correlation between components. Compared with PCA, PLS-DA can maximize the difference between groups
and facilitate the search for differential lipids. Orthogonal partial least squares discriminant analysis (OPLS-
DA) combines orthogonal signal correction (OSC) and PLS-DA method, which can decompose the x-matrix
information into two types (1. information related to Y and 2. irrelevant information) and filter the differential
variables by removing the irrelevant differences.

The OPLSR.Anal function in the R package MetaboAnalystR was used for this analysis. The following
table shows a partial result from the OPLS-DA model:
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Table 9: Partial results of OPLS-DA

Index VIP

MW0057055 1.4383200

MW0107179 0.8042176

MW0107555 1.2124390

MW0009304 1.0059434

MEDN1476 0.1777086

FDATN00717 0.4158045

MW0053418 1.5326597

MW0126293 1.1090842

MW0169549 0.4223619

MW0006917 1.2707853

MW0142582 1.0270233

MW0009611 1.8281976

MW0103343 1.1156874

MW0103332 1.2267477

MW0009652 1.3655840

Partial results of OPLS-DA:Final_report/2.Basic_Analysis/ Difference_analysis/*_vs_*/*_info.xlsx

OPLS-DA model overview:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_model.*

OPLS-DAmodel summary table:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_summary.xlsx.

4.2.1 Principles of OPLS-DA model

During OPLS-DA modeling, the X matrix information is decomposed into information related to Y and
information unrelated to Y. Among them, the variable information related to Y is the predicted principal com-
ponent, and the information unrelated to Y is the orthogonal principal component (Thevenot et al., 2015).
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Fig 13: OPLS-DA score diagram

Note: The X-axis represents the predicted principal component, and the difference

between groups can be seen in the horizontal direction. The Y-axis represents the or-

thogonal principal component, and the vertical direction shows the difference within

the group. Percentage indicates the degree to which the component explains the

data set. Each dot in the figure represents a sample, samples in the same Group are

represented by the same color, and Group indicates sample groups.

OPLS-DA score diagram:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
scorePlot.*.

4.2.2 OPLS-DA model validation

The prediction parameters of the evaluation model are R²X, R²Y and Q², where R²X and R²Y represent the
explanatory rate of the model to X and Y matrix respectively, and Q² represents the predictability of the model.
The closer these three indicators are to 1, the more stable and reliable the model is. Q² > 0.5 can be considered
as an effective model, and Q² > 0.9 can be considered as an excellent model. The following figure shows the
OPLS-DA validation plot with the horizontal coY-axis indicating the model R²Y, Q² values, and the vertical
coY-axis is the frequency of the model classification effect. The model performs bootstrapping 200 times and
if Q²’s P = 0.02, it indicates that the predictability of four random grouping models is better than that of the
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OPLS-DA model in the Permutation detection. If R²Y’s P = 0.545, it indicated that there were 109 random
grouping models in the Permutation detection, whose explanation rate of Y matrix was better than that of the
OPLS-DA model. In general, P < 0.05 is the best model.

Fig 14: OPLS-DA verification diagram

Note: The orange color represents the R2Y of the random grouping model, the pur-

ple color represents the Q2 of the random grouping model, and the black arrows

represent the values of R2X, R2Y, and Q2 of the original model.

OPLS-DA verification diagram:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_permutation.*

4.2.3 OPLS-DA S-plot

The figure below shows the OPLS-DA S-plot. The horizontal axis is the covariance between the principal
components and metabolites, the vertical axis indicates the correlation coefficient between the principal com-
ponents and the metabolites. The closer the points are to the top right corner or bottom left corner, the more
significant the difference in metabolite abundance. Red dots indicate metabolites with VIP value > 1 and green
dots indicate metabolites with VIP value <= 1.
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Fig 15: OPLS-DA S-plot

OPLS-DA S-plot:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-DA_SPlot.*

4.3 Dynamic distribution of metabolite content differences

To show the overall metabolite abundance distribution in the samples, metabolites were sorted and plotted
based on fold-change values from small to large. The distribution of the ranked metabolites is shown below
with the top 10 up-regulated and top 10 down-regulated metabolites labelled.
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Fig 16: Dynamic distribution of metabolite content difference

Note: In the figure, the X-axis represents the rank number ofmetabolites based on FC

value. The Y-axis represents the log2FC value. Each point represents a metabolite.

The green points represent the top 10 down-regulated metabolites and the red points

represent the top 10 up regulated metabolites.

Dynamic distribution ofmetabolite content difference:Final_report/2.Basic_Analysis/Difference_analysis/
*_vs_*/TopFcMetabolites/*_TopFcDistribution_*.*

4.4 Differential metabolite screening

It is often necessary to combine univariate statistical analysis and multivariate statistical analysis for large
high dimensional datasets such as metabolomics datasets to accurately identify differential metabolites. Univari-
ate statistical analysis methods include parametric test and nonparametric test. Multivariate statistical analysis
methods include principal component analysis and partial least square discriminant analysis. Based on the re-
sults of OPLS-DA (biological repetition ≥ 3), multivariate analysis of Variable Importance in Projection (VIP)
from OPLS-DA modeling was used to preliminarily select differential metabolites from different samples. Dif-
ferential metabolites can further be screened by combining the P-value/FDR (when biological replicates ≥ 2) or
FC values from univariate analysis. The screening criteria for this project are as follows:

1. Metabolites with VIP > 1 were selected. VIP value represents the effect of the differences between
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groups for a particular metabolite in various models and sample groups. It is generally considered that the
metabolites with VIP > 1 are significantly different..

2. Metabolites with P-value < 0.05 (Student’s t test were used when the data follow a normal distribu-
tion, otherwise Wilcoxon rank-sum test) were considered as significant differences and selected.

Partial results from the screening criteria is shown below.

Table 10: Screening results of differential metabolites

Index Compounds Type

MW0057055 1,2-Dilinoleoyl-SN-glycero-3-phosphocholine down

MW0053418 ganoderic acid F up

MW0006917 Normetanephrine up

MW0009611 Pyridaben up

MW0103343 2’-Deoxyguanosine down

MW0009652 Ranolazine down

MW0107969 L-Tyrosine ethyl ester up

MW0152041 Knipholone up

MW0063564 C24:1 Sphingomyelin up

MW0107880 L-Homophenylalanine down

MW0009466 Pimelic Diphenylamide 106 down

MW0003351 2-Phenylpropanal down

MEDP1884 Prolyl-Histidine down

MW0148591 Val-Pro-Leu down

MW0107459 Ile-Pro-Ile down

Screening results of differential metabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
*_vs_*_filter.xlsx

4.4.1 Bar chart of differential metabolites

The following figure shows the result of top 20 differentially expressed metabolites in each comparison
with fold-change value shown as log2 values.
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Fig 17: Histogram of multiple difference

Note: X-axis refers to log2FC values of top differential metabolites, the Y-axis refers

to metabolites. Red bars represent up-regulated differential metabolites and green

bars represent down-regulated differential metabolites.

Histogram ofmultiple difference:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/TopFcMetabolites/
*_TopFcBarChart_*.*

4.4.2 Radar map of differential metabolites

The top 10 differential metabolites based on Fold-change were selected and plotted on the radar plot.
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Fig 18: Radar map of differential metabolites

Note: The grid lines correspond to the log2FC. The green colored area are formed

from the lines connecting the dots.

Radar map of differential metabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
TopFcMetabolites/ *_TopFcRadarChart_*.*

4.4.3 VIP value map of differential metabolites

The top 20 metabolites with the largest VIP value from the OPLS-DA model were selected and plotted.
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Fig 19: VIP values of differential metabolites

Note: The X-axis represents VIP values, and the Y-axis represents metabolites. Red

dots represent up-regulated differential metabolites, and green dots represent down-

regulated differential metabolites. Yellow represents metabolites with significant

differences in three and more differential comparison groups.

VIP values of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/vipscore/
*_vipScore*.*

4.4.4 Volcano plot of differential metabolites

Volcano Plot is mainly used to show the relative differences and the statistical significance of metabolites
between two groups. We provided the volcano plot of differential metabolites using different selection criteria
for your consideration. The details of different selection criteria are described in the README document under
the volcano plot directory. In addition, the attached results also provided an interactive web version of the
volcano plot where you can examine the details of each metabolite.

28



Fig 20: Volcano plot of differential metabolites

Note: Each point in the volcano plot represents a metabolite with green points rep-

resent down-regulated differential metabolite, red points represent up-regulated dif-

ferential metabolite, and gray points represent the detected metabolites but show no

significant differences. The X-axis represents the (log2FC) value of metabolites be-

tween two groups. The further away from 0 on theX-axis, the greater the fold-change

between two groups. If the metabolites were screened using VIP + FC + P-value:

the Y-axis will represent the the level of significant differences (-log10P-value), The

size of each dot represents the VIP value.

Volcano plot of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/vol/*_vol.*

4.4.5 Hierarchical clustering tree

Hierarchical clustering was performed on different sample groups to form a clustering tree showing the
similarity between samples. Samples in the same cluster have higher similarity.
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Fig 21: Hierarchical clustering tree

Note: Each row in the figure represents one sample. Samples with high similarity to

each other are grouped into the same cluster.

Hierarchical clustering tree:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/dendrogram/
*_dendrogram.*

4.4.6 Heatmap of differential metabolites

In order to observe the fold-change of differential metabolites more intuitively, we normalized the relative
quantification using unit variance scaling (UV scaling, see appendix for details of calculation formula) and
plotted on a heatmap using pheatmap in R.
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Fig 22: Cluster heatmap of differential metabolites

Note: The X-axis shows the name of the samples and the Y-axis shows the differen-

tial metabolites. Different colors in the heatmap represent the values obtained after

standardization and reflects the level of relative quantification. The darker the red,

the higher the quantification. In contrast, the darker the green, the lower the quantifi-

cation. _all_heatmap_class: Heatmap by metabolites classification, Class represents

the first-level classification of metabolites. _all_heatmap_col-row_cluster: cluster-

ing analysis is performed for both metabolites and samples, the clustering line on the

left side of the figure is the metabolite clustering line, and the clustering line on the

top of the figure is the sample clustering line. _all_heatmap_row_cluster: clustering

analysis is performed for metabolites only, the clustering line on the left side of the

figure is the metabolite clustering line.

Heatmap of differential metabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/heatmap/

4.4.7 Correlation analysis of differential metabolites

Metabolites may act synergistically or in mutually exclusive relationships amongst each other.. The corre-
lation analysis can help measure the metabolic proximities of significantly different metabolites. This analysis
will help further understand the mutual regulatory relationship between metabolites in the biological process.
Pearson correlation was used to perform correlation analysis on the differential metabolites identified based on
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the screening criteria described previously.

Fig 23: Heatmap of correlation of different metabolites

Note: The ID of the metabolites are shown on both horizontal and verticle axses.

The colors represent the Pearson correlation coefficient (r) with the scale seen on

the right (The darker the red, the stronger the positive correlation; the darker the

green the stronger the negative correlation). If there are more than 50 differential

metabolites, the figure will only show the top 50 metabolites based on VIP.

Original file path (The directory structure in positive and negative ion mode is the same, so only the files
in positive ion mode are linked to):

Heatmap of correlation of differentmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
cpdCorr/*_cpdCorr_*.*

32



Fig 24: Chord diagram of differential metabolites

Note: The outermost layer shows the metabolite ID. The larger the point, the larger

its corresponding log2FC value. The color for the first and second layer represent

Level 1 metabolite classification. The chords in the inner most layer reflect the Pear-

son correlation between the connected metabolites. Red chords represent positive

correlation and the blue chords represent negative correlation. If there are more than

50 differential metabolites, the figure will only show the top 50 metabolites based

on VIP.

Chord diagram of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/cpdCorr/
*_cpdCorrCir_*.*
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Fig 25: Correlation network diagram of differential metabolites

Note: The points in the figure represent the various differential metabolites, and the

size of the points is related to the Degree of connection. The larger the point, the

greater the Degree of connection, i.e. the more points (neighbors) connected to it.

Red lines represent positive correlations and blue lines represent negative correla-

tions. Line thickness represent the absolute value of Pearson correlation coefficient.

The larger the |r|, the thicker the line. If there are more than 50 differential metabo-

lites, the figure will only show the top 50 metabolites based on VIP.

Correlation network diagram of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/
*_vs_*/cpdCorr/*_cpdCorrNet_*.*

4.4.8 Z-value map of differential metabolites

Z-score standardization normalizes the relative content of the differential metabolites by calculating Z-
scores. The Z-score plot provides a very visual representation of the distribution of each differential metabolite
across groups.
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Fig 26: Z-value map of differential metabolites

Note: The X-axis represents the z-score and the Y-axis represents the differential

metabolites. The colored dots in the plot represent samples of different groups. If

there are more than 50 differential metabolites, the figure will only show the top 50

metabolites based on VIP.

Z-value diagram of differential metabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
zScore/*_zScore*.*

4.4.9 Violin plot of differential metabolites

A violin plot is a combination of a box plot and a density plot, mainly used to show the data distribution
and its probability density. The box shape in the middle indicates the interquartile range, the thin black line
extending from it represents the 95% confidence interval, the black horizontal line right in the middle is the
median, and the outer shape indicates the density of the data distribution.
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Fig 27: Violin plot of differential metabolites

Note: The horizontal coordinate is the grouping and the vertical coordinate is the

relative content of the differential metabolites (raw peak area). If there are more

than 50 differential metabolites, the figure will only show the top 50 metabolites

based on VIP.

Violin plot of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/fullViolin/
*_fullViolin*.*

Violin plot of singlemetabolite:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/fullViolin/singleViolin

4.4.10 K-Means analysis

K-means analysis is a method to examine the trend of relative quantification changes of a metabolite in
different sample groups. K-means is performed based on the UV standardized relative quantification value.
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Fig 28: K-Means diagram of differential metabolites

Note: TheX-axis represents the sample names and the Y-axis represents the standard-

ized relative quantification.“Sub class”represents a group of metabolites with the

same trend and the number represent the number of metabolites in this cluster.

K-means diagram of differential metabolites:Final_report/2.Basic_Analysis/kmeans/*_kmeans_cluster.*

4.4.11 Venn diagram of differential metabolites

Venn diagram is used to show the relationship the number of shared and unique metabolites in different
comparison groups. A petal diagram is used for groups 5 or more. The results are shown below:
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Fig 29: Venn diagram of differences among groups

Note: Each circle in the figure represents a comparison group, the number in over-

lapped parts represents the number of common differential metabolites between com-

parison groups, and the number in non-overlapped parts represents the number of

unique differential metabolites in comparison groups.

Venn diagram of differences among groups:Final_report/2.Basic_Analysis/Venn/

4.5 Functional annotation and enrichment analysis of differential metabolites with

KEGG database

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database that integrates compounds and genes
into metabolic pathways. The KEGG database enabled researchers to study genes with their expression infor-
mation and compounds with its abundances as a complete network.

4.5.1 Functional annotation of differential metabolites

Metabolites are annotated using the KEGG database (Kanehisa et al., 2000), and only metabolic pathways
containing differential metabolites are shown. Detailed results are found in the attached results. A portion of
the results is shown below:
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Fig 30: KEGG pathway of differential metabolites

Note: Red circles indicate that the metabolite content was significantly up-regulated

in the experimental group; blue circles indicate that the metabolite content was de-

tected but did not change significantly; green circles indicate that the metabolite

content was significantly down-regulated in the experimental group; and orange cir-

cles indicate a mixture of both up- and down-regulated metabolites. This allows

searching for metabolites that may contribute to the phenotypic differences.

KEGGpathway of differential metabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/ en-
richment/Graph/ko*****

Statistical analysis of KEGG database annotation of screened metabolites with significant differences.
Some of the results are as follows:
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Table 11: KEGG annotations for differential metabolites

Index Compounds Type cpd_ID

MW0057055 1,2-Dilinoleoyl-SN-glycero-3-phosphocholine down C00157

MW0053418 ganoderic acid F up -

MW0006917 Normetanephrine up C05589

MW0009611 Pyridaben up C18614

MW0103343 2’-Deoxyguanosine down C00330

MW0009652 Ranolazine down -

MW0107969 L-Tyrosine ethyl ester up C01458

MW0152041 Knipholone up -

MW0063564 C24:1 Sphingomyelin up C00550

MW0107880 L-Homophenylalanine down C17235

MW0009466 Pimelic Diphenylamide 106 down -

MW0003351 2-Phenylpropanal down -

MEDP1884 Prolyl-Histidine down -

MW0148591 Val-Pro-Leu down -

MW0107459 Ile-Pro-Ile down -

Table 12: Enrichment Statistics of KEGG annotations for differential metabolites

ko_ID Sig_compound compound Sig_compound_all compound_all

ko00564 41 126 151 613

ko00590 22 83 151 613

ko00591 22 79 151 613

ko00592 20 72 151 613

ko01100 116 482 151 613

ko04723 25 91 151 613

ko05231 20 73 151 613

ko00350 7 16 151 613

ko00230 3 18 151 613

ko01232 4 24 151 613

ko02010 6 44 151 613

ko00600 3 20 151 613

ko04071 4 19 151 613

ko04217 3 16 151 613

ko00400 2 11 151 613

KEGGannotations for differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/*_filter_anno.xlsx

Enrichment Statistics of KEGG annotations for differential metabolites:Final_report/2.Basic_Analysis/
Difference_analysis/*_vs_*/ enrichment/*_KEGG.xlsx
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4.5.2 KEGG classification of differential metabolites

The significant differential metabolites were classified based on pathway annotation. The results are as
follows:

Fig 31: KEGG classification of differential metabolites

Note: the Y-axis shows the name of the KEGG pathway. The number of metabolites

and the proportion of the total metabolites are shown next to the bar plot.

KEGGclassification of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/*_KEGG_barplot.*

4.5.3 Hierarchical Cluster Analysis of differential metabolites in KEGG pathway

Five significantly enriched KEGG metabolic pathways were selected for clustering analysis. Only path-
ways with at least 5 differential metabolites are shown.
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Fig 32: Clustering heat map of differential metabolites in KEGG pathway

Note: The X-axis shows the name of the samples and the Y-axis shows the differen-

tial metabolites. Different colors in the heatmap represent the values obtained after

normalization and reflects the level of relative quantification. The darker the red,

the higher the quantification. In contrast, the darker the green, the lower the quan-

tification. The colored bar on top depicts sample groups. If hierarchical clustering

is performed, the clustering tree will be shown on the left. If classification was per-

formed on the metabolites, a colored bar will be shown on the left to depict Level 1

classifications.

Clustering heatmap of differentialmetabolites inKEGGpathway:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/enrichment/KEGG_heatmap

4.5.4 KEGG enrichment analysis of differential metabolites

KEGG pathway enrichment analysis was conducted based on the annotation results. We calculated the
Rich Factor for each pathway, which was the ratio of the number of differential metabolites in the corresponding
pathway to the total number of metabolites annotated in the same pathway. The greater the value, the greater
the degree of enrichment. P-value is the calculated using hypergeometric test as shown below:

𝑃 = 1 −
𝑚−1
∑
𝑖=0

(𝑀𝑖 )(𝑁−𝑀𝑛−𝑖 )
(𝑁𝑛)
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N represents the total number metabolites with KEGG annotation, n represents the number of differential
metabolites in N, M represents the number of metabolites in a KEGG pathway in N, and m represents the
number of differential metabolites in a KEGG pathway in M. The closer the p-value to 0, the more significant
the enrichment. The size of the dots in the figure represents the number of significantly different metabolites
enriched in the corresponding pathway. The top 20 pathways in terms of P-value were selected for presentation
from smallest to largest.

Fig 33: KEGG enrichment diagram of differential metabolites

Note: The X-axis represents the Rich Factor and the Y-axis represents the pathway.

The color of points reflects the p-value. The darker the red, the more significant

the enrichment. The size of the dot represents the number of enriched differential

metabolites.

KEGGenrichment diagram of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/
*_vs_*/enrichment/*_KEGG_Enrichment.*
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4.6 Functional annotation and enrichment analysis with HMDB database

4.6.1 Functional annotation and enrichment analysis of differential metabolites in HMDB database

HMDB is a widely used database that has collected more than 40,000 endogenous metabolites and more
than 5000 related protein or gene information. Records in this database links to external databases (such as
KEGG, Metlin, Biocyc, etc.) and also contains mass spectra and NMR spectra data. The HMDB sub-database
SMPDB also provides a detailed overview of human metabolism, metabolic disease pathways, and metabolite
signaling and drug activity pathways.

Pathway enrichment analysis was performed only with the Primary Pathways. The results are as follows:

Table 13: SMPDB pathway enrichment for differential metabolites

primary_SMPDB_ID P-value

SMP0000128 0.100976099704507

SMP0000563 0.100976099704507

SMP0000581 0.100976099704507

SMP0000374 0.100976099704507

SMP0000560 0.100976099704507

SMP0000574 0.100976099704507

SMP0000573 0.100976099704507

SMP0000562 0.100976099704507

SMP0000482 0.100976099704507

SMP0000558 0.109909606456136

SMP0000196 0.109909606456136

SMP0000559 0.109909606456136

SMP0000334 0.109909606456136

SMP0000060 0.109909606456136

SMP0000212 0.109909606456136

The differential metabolites from the top 20 HMDB Primary Pathways pathways with P-value were an-
notated and visualized using the HMDB database. Detailed information about each group can be found in the
corresponding data files. Partial results are shown below:
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Fig 34: HMDB pathway map of differential metabolites

Note: Boxes with chemical structural formulas represent metabolites, red indicated

that the metabolite content was significantly up-regulated in the experimental group,

gray indicated that the metabolite content was detected but did not change signifi-

cantly, green indicated that the metabolite content was significantly down-regulated

in the experimental group, and blue represents metabolites in the pathway that were

not detected in this experiment. The causes of phenotypic differences among study

subjects were sought through metabolic pathways.

The top 20 HMDB Primary Pathways based on P-value ranking were chosen for Rich Factor plot. The Rich
Factor is the ratio of the number of differential metabolites in the corresponding pathways to the total number of
metabolites annotated to the same pathway. The higher the value is, the greater the degree of enrichment. The
closer P-value is to 0, the more significant the enrichment is. The size of the dots in the figure represents the
number of differential metabolites enriched into the corresponding pathway. The results are shown below:
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Fig 35: HMDB enrichment diagram of differential metabolites

Note: The X-axis represents the Rich Factor and the Y-axis represents the pathway.

The color of points reflects the P-value. The darker the red, the more significant

the enrichment. The size of the dot represents the number of enriched differential

metabolites.

SMPDB pathway enrichment for differential metabolites:Final_report/2.Basic_Analysis/ Differ-
ence_analysis/*_vs_*/enrichment/*_SMPDB_primary.xlsx

HMDBpathwaymap of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/SMP_primary_pathway

HMDBenrichment diagram of differentialmetabolites:Final_report/2.Basic_Analysis/Difference_analysis/
*_vs_*/enrichment/*SMPDB_primary_Enrichment.*

4.7 MSEA enrichment analysis

Conventional enrichment analysis based on hypergeometric distribution relies on up- or down-regulated
metabolites and tends to miss metabolites that are not significantly different but are biologically important.
Metabolite set enrichment analysis (MSEA) does not require specifying a clear threshold for differential metabo-
lites. The idea is to establish a series of metabolite sets, each representing a certain biological function, and
identify metabolite sets that are significantly different.

Metabolite database fromMetaboAnalyst (https://www.metaboanalyst.ca/) includes: (1) human metabolic
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pathways based on those found in the KEGG database: 84 KEGG pathway metabolic sets (kegg_pathway). (2)
biologically significant disease-related metabolic sets for specific biological fluids: 339 blood metabolic sets,
384 urine metabolic sets, and 150 cerebrospinal fluid metabolic sets (csf). The results of the analysis were as
follows:

Table 14: Table for MSEA enrichment analysis

name P-value foldEnrichment

Steroid biosynthesis 0.030958 4.1452615

Fatty acid degradation 0.042204 3.7940779

Purine metabolism 0.057401 2.3721537

Glycine, serine and threonine metabolism 0.165450 1.9887499

Fatty acid biosynthesis 0.197080 1.7852579

Glycerophospholipid metabolism 0.205030 1.7200072

Pantothenate and CoA biosynthesis 0.215360 1.5581856

D-Glutamine and D-glutamate metabolism 0.306910 1.1662317

Glyoxylate and dicarboxylate metabolism 0.306910 1.1662317

Nitrogen metabolism 0.306910 1.1662317

Selenocompound metabolism 0.337780 1.0350104

Primary bile acid biosynthesis 0.354090 0.9712897

Starch and sucrose metabolism 0.361750 0.9431194

Neomycin, kanamycin and gentamicin biosynthesis 0.368050 0.9191792

Galactose metabolism 0.371000 0.9087391

The top 50 metabolic sets based on P-value ranking are shown below:
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Fig 36: MSEA enrichment analysis graph

Note: The vertical coordinate indicates the name of the metabolic set (sorted by

P-value), corresponding to the P-value of the labeled metabolic set; the horizontal

coordinate indicates Fold Enrichment, the degree of enrichment; the color indicates

P-value, the closer the P-value is to 0, the redder the color is, the more significant

the enrichment is.

Table forMSEA enrichment analysis:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/enrichment/
*_msea.xlsx

MSEAenrichment analysis graph:Final_report/2.Basic_Analysis/Difference_analysis/*_vs_*/enrichment/
*_msea.*

4.8 Diseases association with differential metabolites

We annotated disease information according to the HMDB database for differential metabolites. Some of
the results are shown below:
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Table 15: Table of association between differential metabolites and diseases

CompoundName KeggDiseases

1,2-Dilinoleoyl-SN-glycero-3-phosphocholine -

ganoderic acid F -

Normetanephrine -

Pyridaben -

2’-Deoxyguanosine -

Ranolazine -

L-Tyrosine ethyl ester -

Knipholone -

C24:1 Sphingomyelin -

L-Homophenylalanine -

Pimelic Diphenylamide 106 -

2-Phenylpropanal -

Prolyl-Histidine -

Val-Pro-Leu -

Ile-Pro-Ile -

Table of association between differentialmetabolites and diseases:Final_report/2.Basic_Analysis/Difference_
analysis/*_vs_*/enrichment/*_sigDiseasesTable.xlsx
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6 Appendix

6.1 List of software and versions

Table 16: Software used

Analysis Software Version

PCA R (base package) 4.1.2

Pearson Correlation R (base package) 4.1.2

Heatmap R (ComplexHeatmap) 2.9.4

OPLS-DA R (MetaboAnalystR) 1.0.1

Radar map R (fmsb) 0.7.1

Chord diagram R (igraph; ggraph) 1.2.11; 2.0.5

Correlation network diagram R (igraph) 1.2.11

Modulation network diagram R (FELLA) 1.2.0

In all the analyses of this project, two main approaches were taken to pre-process the data, which were
calculated as follows:

（1）Unit variance scaling (UV)

Unit variance scaling (UV), also known as Z-score normalization / auto scaling, is a method of normalizing
data based on the mean and standard deviation of the original data. The processed data conforms to a standard
normal distribution with a mean of 0 and a standard deviation of 1.

Calculation method：

Original data centering divided by the standard deviation of the variable.

The formula is as follows：

𝑥′ = 𝑥 − 𝜇
𝜎

µ is the mean value and σ is the standard deviation.

（2）Zero-centered (Ctr)

Calculation method:

Original data minus the mean value of the variable.

The formula is as follows：

𝑥′ = 𝑥 − 𝜇
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