
Demo Widely Targeted Metabolomics for Plants
Report

Metware Biotechnology Inc.

www.metwarebio.com

https://www.metwarebio.com/plants-widely-targeted-metabolomics-service/
www.metwarebio.com


Contents

1 Abstract 3

2 The experimental process 3
2.1 Sample information and experimental materials and methods . . . . . . . . . . . . . . . . . 4
2.2 Standards and reagents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Sample extraction process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Chromatography-mass spectrometry acquisition conditions . . . . . . . . . . . . . . . . . . 5
2.5 Qualitative and quantitative principles of metabolites . . . . . . . . . . . . . . . . . . . . . 6

3 Data evaluation 7
3.1 Qualitative and quantitative analysis of metabolites . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Quality control sample analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Hierarchical Cluster Analysis (HCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Sample correlation assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Analysis results 20
4.1 Grouping principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Discriminant Analysis by Orthogonal Partial Least Squares (OPLS-DA) . . . . . . . . . . . 22
4.3 Dynamic distribution of metabolite content differences . . . . . . . . . . . . . . . . . . . . 26
4.4 Differential metabolite screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Functional annotation and enrichment analysis of differential metabolites with KEGG database 42

5 Reference 50

6 Appendix 51
6.1 Software list and version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



Demo Widely Targeted Metabolomics for Plants Report

1 Abstract

Metabolomics is the study of all metabolites and their dynamics in a biological system by performing
qualitative and quantitative analyses. The data is often used to study the metabolic basis of observed pheno-
types, to understand the response mechanisms under different physical, chemical, or pathological conditions,
and to evaluate safety of food and drugs. Plants, as a direct or indirect source of nutrition, energy, and
pharmaceutical compounds, can synthesize a large number of metabolites with different biological functions.
Therefore, the study of their metabolomics plays an important role in improving crop yield, food quality, and
other health applications.

(1) For this project, 12 samples were selected, and divided into 3 groups for metabolic study, with 4 bi-
ological replicates for each group. A total of 664 metabolites were detected based on UPLC-MS/MS
system and identified using in-house metabolite database.

(2) Results of differential metabolite analysis:

Table 1: Number of differential metabolites

group name All sig diff down regulated up regulated

A_vs_B 202 68 134

B_vs_C 147 87 60

Number of identifiedmetabolites: Final report/2.Basic_Analysis/Difference_analysis/sigMetabolitesCount.xlsx

2 The experimental process

Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is a technique
used for accurate qualitative and quantitative analysis for various compounds. The main purpose of
metabolomics analysis is to detect and identify metabolites with important biological significance by
differentiating statistically significant differential metabolites between sample groups. The overall process
is as follows:
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Fig 1: Flow chart of metabolomics analysis

2.1 Sample information and experimental materials and methods

Each sample group and corresponding sample information are as follows:

Table 2: Sample information

Species Tissue Sample Group

- - A1 A

- - A2 A

- - A3 A

- - A4 A

- - B1 B

- - B2 B

- - B3 B

- - B4 B

- - C1 C

- - C2 C

Sample information: Final report/1.Data_Assess/all_group/sample_info.xlsx
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2.2 Standards and reagents

Table 3: Information of standards and reagents

reagent level brand

methanol chromatographically pure Thermo Fisher

acetonitrile chromatographically pure Thermo Fisher

Formic acid chromatographically pure Sigma

2.3 Sample extraction process

2.3.1 Dry sample extraction

The samples were lyophilized using vacuum freeze-dryer and then ground in a ball mill grinder (30 Hz,
1.5 min) (MM 400, Retsch). 50 mg of the ground sample was mixed with 1200 μL of -20°C pre-cooled
70% methanol with internal standards. The mixture was mixed by vortex for 30 sec every 30 min for a total
of 6 times, followed by centrifugation (12000 rpm, 3 min, 4°C). The supernatant was collected and filtered
through a 0.22um filter membrane and kept for UPLC-MS/MS analysis.

2.4 Chromatography-mass spectrometry acquisition conditions

The data acquisition instruments consisted of Ultra Performance Liquid Chromatography (UPLC) (Ex-
ionLC™ AD, https://sciex.com/) and tandem mass spectrometry (MS/MS) (Applied Biosystems QTRAP
6500, https://sciex.com/).

Liquid phase conditions were as follows:

(1) Chromatographic column: Agilent SB-C18 1.8 µm, 2.1 mm * 100 mm;

(2) Mobile phase: A phase was ultrapure water (0.1% formic acid added), B phase was acetonitrile (0.1%
formic acid added);

(3) Elution gradient: 0.00 min, the proportion of B phase was 5%, within 9.00 min, the proportion of B
phase increased linearly to 95%, and remained at 95% for 1 min, 10.00-11.10 min, the proportion of B
phase decreased to 5%, and balanced at 5% upto 14 min;

(4) Flow rate: 0.35 mL/min;

(5) Column temperature: 40 °C;

(6) Injection volume 2 μL.
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The mass spectrum conditions were as follows:

LIT and Triple Quadrupole (QQQ) scans were obtained on a triple quadrupole Linear Ion TRAP Mass
Spectrometer (Q TRAP) (AB6500 Q TRAP UPLC/MS/MS system). This system is equipped with ESI Turbo
ion spray interface and both positive and negative ion modes can be controlled by Analyst 1.6.3 software (AB
Sciex). Operating parameters of ESI source were as follows: ion source, turbine spray; Source temperature
550°C; Ion spray voltage (IS) 5500 V (positive ion mode) /-4500 V (negative ion mode); The ion source gas
I (GSI), gas II (GSII) and curtain gas (CUR) were set to 50, 60 and 25.0 psi respectively, and the collision-
induced ionization parameter was set to high. QQQ scan used MRM mode and collision gas (nitrogen) was
set to medium. DP and CE of each MRM ion pair were completed by further DP and CE optimization. A
specific set of MRM ion pairs was monitored at each period based on the eluted metabolites in each period.

2.5 Qualitative and quantitative principles of metabolites

The metabolites were identified qualitatively based on their secondary spectrum information. Isotope
signals, repeated signals containing K+ ions, Na+ ions and NH4+ ions, as well as repeated signals of fragments
of other substances with larger molecular weights were removed during analysis.

Metabolites were quantified by triple quadrupole mass spectrometry with multiple reaction monitoring
(MRM). In MRM mode, the first quadrupole screens the precursor ions for the target compound and ex-
cludes ions of other molecular weights. After ionization induced by the impact chamber, the precursor ion
is fragmented, and a characteristic fragment ion is selected through the third quadrupole and excludes the
interference of other non-target ions. By selecting a particular fragment ion, quantification is more accurate
and reproducible.
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Fig 2:

Schematic diagram of multiple reaction monitoring mode by mass spectrometry

3 Data evaluation

3.1 Qualitative and quantitative analysis of metabolites

Analyst 1.6.3 was used to process mass spectrum data. The following figure shows the total ions current
(TIC) andMRMmetabolite detection multi-peak diagram (XIC) of mixed QC samples. The X-axis shows the
Retention time (Rt) from metabolite detection, and the Y-axis shows the ion flow intensity from ion detection
(intensity unit: CPS, count per second).
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(a) Demo_QC_MS_TIC-N

(b) Demo_QC_MS_TIC-P

Fig 3: Total ion current diagram of mixed phase mass spectrum analysis

Note: N stands for negative ion mode, P for positive ion mode

Total ion current diagram of mixed phase mass spectrum analysis: Final report/1.Data_Assess/QC/
*_QC_MS_TIC*.*
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(a) Demo_MRM_detection_of_multimodal_maps-N

(b) Demo_MRM_detection_of_multimodal_maps-P

Fig 4: Multi-peak diagram of MRM metabolite detection

Note: N stands for negative ion mode, P for positive ion mode

Multi-peak diagram ofMRMmetabolite detection: Final report/1.Data_Assess/QC/*_MRM_detection_
of_multimodal_maps*.*

The MRM metabolite detection multi-peak diagram shows the compounds that were detected in the
sample, with each mass spectrum peak color representing one detected metabolite. The characteristic ions
of each compound were selected by triple quadrupole and measured for their signal intensity (CPS). The
mass spectrometry data was analyzed using MultiQuant software and the chromatographic peaks were inte-
grated and corrected. The peak area of each chromatographic peak represents the relative abundance of the
corresponding compound.

Mass spectrum peak of each metabolite in different samples was corrected based on retention time and
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peak distribution information to ensure the accuracy of qualitative and quantitative analysis. The following
figure shows the integral correction results from a randomly selected metabolite in the samples. The X-axis
of each sub-plot is the retention time (min), and the Y-axis of each sub-plot is the ion current intensity (CPS)
of a certain metabolite ion detection.

(a) Demo_Integral_correction_diagram-N

(b) Demo_Integral_correction_diagram-P

Fig 5: Integral correction diagram for quantitative analysis of metabolites

Note: The figure shows the quantitative analysis integral correction results of ran-

domly selected metabolites in different samples. The x-axis is the retention time

(min) of metabolite detection, the y-axis is the ion current intensity (CPS) of a cer-

tain metabolite ion detection, and the peak area represents the relative content of the

substance in the sample.

Integral correction diagram for quantitative analysis of metabolites: Final report/1.Data_Assess/QC/
*_Integral_correction_diagram*.*

The metabolite ID, relative content and corresponding metabolite names of some metabolites detected
in this experiment are shown in the following table:
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Table 4: Information of metabolite detected in sample

Index A1 A2

Lmcn009122 417451.52 481702.04

Lmbn006152 943897.88 956061.00

Hmmp001541 79285.34 50022.59

MWSmce577 180291.10 170893.28

MWSmce699 754310.63 673356.73

MWSslk133 128920.37 139451.10

mws0943 13276.56 32281.99

MWS0559 111558.10 144911.10

Hmjp003400 3243237.04 2452613.28

Zmgp004786 244871.73 244798.17

Information ofmetabolite detected in sample: Final report/1.Data_Assess/all_group/ALL_sample_data.xlsx

Compound composition is sample-specific and varies between samples. The analysis of compound
composition ratios can help examine the distribution of major compounds in the samples. The proportion of
each compound class were analyzed and shown in the ring figure.
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Fig 6: Ring plot of metabolite categories

Note: Each color represents a metabolite class, and the area of the color block indi-

cates the proportion of that class.

Ring plot of metabolite categories: Final report/1.Data_Assess/Class_Count/Class_Count_Ring.*

3.2 Quality control sample analysis

3.2.1 Total ion flow chromatogram

A quality control (QC) sample was prepared from a mixture of all sample extracts to examine the re-
producibility of the entire metabolomics process. During data collection, one quality control sample was
generally inserted for every 10 test samples.

Reproducibility of metabolite extraction and detection process was assessed by analyzing overlapping
total ion flow diagram (TIC diagram) from different QC samples. High overlapping rate of TIC diagrams
indicates high stability of the instruments throughout the data acquisition process
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(a) Demo_QC_MS_tic_overlap-N

(b) Demo_QC_MS_tic_overlap-P

Fig 7: TIC overlap diagram detected by QC sample essence spectrum

Note: Superimposed spectrum from different QC samples. The results showed that

the spectrum of total ion flow were highly consistent indicating that the signal sta-

bility was good when the same sample was detected at different times by mass spec-

trometry. N stands for negative ion mode and P stands for positive ion mode.

TIC overlap diagram detected by QC sample essence spectrum: Final report/1.Data_Assess/QC/
*_QC_MS_tic_overlap*.*

3.2.2 CV value distribution of all samples

The Coefficient of Variation (CV) value is the ratio between the standard deviation of the original data
and the mean of the original data, which can reflect the degree of data dispersion. The Empirical Cumulative
Distribution Function (ECDF) was used to analyze the frequency of compound CVs that is smaller than the
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reference value. The higher the proportion of compounds with low CV value in the QC samples, the more
stable the experimental data. As a rule of thumb, the proportion of compounds with CV value less than 0.5 in
the QC samples is higher than 85 % indicates that the experimental data is relatively stable. The proportion of
compounds with CV value less than 0.3 in the QC samples is higher than 75 % indicates that the experimental
data is very stable.

Fig 8: CV distribution of each group

Note: the X-axis represents the CV value, the Y-axis represents the proportion of

metabolites. Different colors represent different sample groups. QC indicates quality

control samples. The two dash lines on X-axis correspond to 0.3 and 0.5; the two

dash line on Y-axis correspond to 75% and 85%.

CV distribution of each group: Final report/1.Data_Assess/QC/*_CV_ECDF.*

3.3 Principal Component Analysis (PCA)

3.3.1 Principles of principal component analysis

Multivariate statistical analysis can simplify complex high-dimensional data while preserving the origi-
nal information to the maximum extent by establishing a reliable mathematical model to summarize the char-
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acteristics of the metabolic spectrum. Among them, Principal Component Analysis (PCA) is an unsupervised
pattern recognition method for statistical analysis of multidimensional data. Through orthogonal transforma-
tion, a group of variables that may be correlated are converted into a group of linear unrelated variables that
are called principal components. This method is used to study how a few principal components may reveal the
internal structure of between multiple variables, while keeping the original variable information (Eriksson et
al., 2006). The first principal component (PC1) represents the most variable features in the multidimensional
data matrix, PC2 represents the second most variable feature in the data, and so on. The prcomp function of
R software (www.r-project.org/) was used with parameter scale=True indicating unit variance Scaling (UV)
for normalizing the data. See appendix for details of PCA calculation.

3.3.2 Principal component analysis of the sample population

Principal component analysis (PCA) was performed on all the samples (including QC samples) to exam-
ine the overall metabolic differences between each group and the variation between samples within a group.
QC is the Quality control sample mentioned above. PCA plot for the first two principal components is as
follows:
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Fig 9: PCA score dia-

gram of quality spectrum data of each group of samples and quality control samples

Note: PC1 represents the first principal component, PC2 represents the second prin-

cipal component, and PC3 represents the third principal component. Percentage rep-

resents the interpretation rate of the principal component to the data set. Each dot in

the figure represents a sample, and samples in the same group are indicated in the

same color.

Principal component analysis of the sample population: Final report /1.Data_Assess/pca/

3.3.3 Principal component univariate statistical process control

We plotted the sample order chart based on principle component analysis results. Each point in the
order chart represents a sample, and the X-axis is the injection order of the sample. Due to changes in the
instrument, the points on the chart may fluctuate up and down. Generally, PC1 of the QC sample should be
within 3 standard deviations (SD) from the normal range.
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Fig 10: PC1 variation diagram of all the sample

Note: In the figure, the X-axis is the injection order of the sample, and the Y-axis

reflects the PC1 value. The yellow and red lines define plus orminus 2 and 3 standard

deviations respectively. The green dots represent QC samples and the black dots

represent test samples.

PC1 control diagram of population sample: Final report/1.Data_Assess/pca/*_PC1_QCC.*

3.4 Hierarchical Cluster Analysis (HCA)

3.4.1 Principles of cluster analysis

Hierarchical Cluster Analysis (HCA) is a type of multivariate statistical analysis method. The samples
are classified according to their features such that highest homogeneity is achieved between sample from the
same group and highest heterogeneity is achieved between samples from different groups. In this report, the
compound quantification data was normalized (Unit Variance Scaling, UV Scaling) and heatmaps were drawn
by R software Pheatmap package. Hierarchical Cluster Analysis (HCA) was used to cluster the samples
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3.4.2 Hierarchical Cluster Analysis results

Fig 11: Sample clustering diagram

Note: X-axis indicates the sample name and the Y-axis are the metabolites. Group

indicates sample groups. The different colors are the results after standardization

of the relative contents (red represents high content, green represents low content).

*_all_heatmap_class: Heatmap by metabolites classification, Class represents the

first-level classification of metabolites. *_all_heatmap_col-row_cluster: clustering

analysis is performed for both metabolites and samples. The clustering tree on the

left represents clustering on the metabolites. The clustering tree on the top repre-

sent clustering on the samples. *_all_heatmap_row_cluster: clustering analysis is

performed for metabolites only.

Hierarchical Cluster Analysis results: Final report/1.Data_Assess/heatmap/

3.5 Sample correlation assessment

Pearson’s correlation analysis between samples are useful for examining the biological replicates in a
group. The higher the correlation between samples in the same group compared with samples in a different
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group, the more reliable the differential metabolite analysis. The cor function in R was used to calculate
Pearson correlation between every pair of samples. The higher the correlation of QC samples (| r | closer to
1) means that the stability of the whole testing process is better and the data quality is higher. The correlation
results can be seen in the figure below:

Fig 12: Correlation diagram between samples

Note: The labels on the left of each row and on the top of each column represent

samples. Different colors represent different Pearson correlation coefficients. The

darker the red, the stronger the correlation. The values in each box represent the

correlation coefficients. ”Correlation_expt” is the evaluation of the correlation be-

tween test samples; ”correlation_QC” is the evaluation of the correlation between

QC samples.

Sample correlation assessment: Final report/1.Data_Assess/correlation_analysis/
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4 Analysis results

4.1 Grouping principal component analysis

Principal component analysis was first performed on each pair of sample groups to examine the degree
of variation between different groups and between samples within the group.

Fig 13: Principal component analysis of different groups

Note: Each group has a PCA plot, PC1 represents the first principal component,

PC2 represents the second principal component, and the percentages on the axis

represents the interpretation rate of the principal component to the data set. Each dot

in the figure represents a sample, samples in the same Group are represented by the

same color, and Group is a grouping.

The three-dimensional PCA result is shown in the figure below:
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Fig 14: Three-dimensional PCA plot of different groups

Note: PC1 represents the first principal component, PC2 represents the second prin-

cipal component, and PC3 represents the third principal component.

The explainable variation of the first five principal components is shown in the figure below:

21



Fig 15: The explainable variation of the first five principal components

Note: the X-axis represents each principal component, the Y-axis represents the ex-

plainable variation, the left figure represents the cumulative explainable variation,

and the right figure represents the explainable variation of each principal component

Principal component analysis of sample groups: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/pca/

4.2 Discriminant Analysis by Orthogonal Partial Least Squares (OPLS-DA)

PCA analysis is often insensitive to variables with small correlation. In contrast, partial least squares-
discriminant analysis (PLS-DA) is a multivariate statistical analysis method with supervised pattern recogni-
tion, in which the independent variable X and dependent variable Y are extracted to calculate the correlation
between components. Compared with PCA, PLS-DA can maximize the difference between groups and facili-
tate the search for differential metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA)
combines orthogonal signal correction (OSC) and PLS-DA method, which can decompose the x-matrix in-
formation into two types (1. information related to Y and 2. irrelevant information) and filter the differential
variables by removing the irrelevant differences.

The OPLSR.Anal function in the R package MetaboAnalystR was used for this analysis. The following
table shows a partial result from the OPLS-DA model:
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Table 5: Partial results of OPLS-DA

Index Compounds VIP

Lmcn009122 (7Z)-Hexadecenoic acid* 1.2799556

Lmbn006152 (9Z,11E)-Octadecadienoic acid 1.1415981

Hmmp001541 (E)-3-(3’,5’-Dimethoxy-4’-hydroxy-

benzylidene’)-2-indolinone

0.0864457

MWSmce577 (E)-Ethyl p-methoxycinnamate 1.2791209

MWSmce699 (Ethoxymethyl)benzene 0.7665183

MWSslk133 1,14-Tetradecanedioic Acid 0.5146088

mws0943 1,4-Dihydro-1-Methyl-4-oxo-3-

pyridinecarboxamide

1.1902057

MWS0559 1,6-anhydro-β-D-glucose 1.2492755

Hmjp003400 1,7-Bis-(4-hydroxyphenyl)-2,4,6-heptatrienone 1.0153660

Zmgp004786 1,7-diphenyl-3,5-diheptanone 0.3809145

Partial results of OPLS-DA: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/*_info.xlsx

OPLS-DA model overview: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_model.*

OPLS-DAmodel summary table: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_summary.xlsx

4.2.1 Principles of OPLS-DA model

During OPLS-DA modeling, the X matrix information is decomposed into information related to Y
and information unrelated to Y. Among them, the variable information related to Y is the predicted principal
component, and the information unrelated to Y is the orthogonal principal component (Thevenot et al., 2015).
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Fig 16: OPLS-DA score diagram

Note: the X-axis represents the predicted principal component, and the difference

between groups can be seen in the horizontal direction. The Y-axis represents the or-

thogonal principal component, and the vertical direction shows the difference within

the group. Percentage indicates the degree to which the component explains the

data set. Each dot in the figure represents a sample, samples in the same Group are

represented by the same color, and Group indicates sample groups.

OPLS-DA score diagram: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_scorePlot.*

4.2.2 OPLS-DA model validation

The prediction parameters of the evaluation model are R²X, R²Y and Q², where R²X and R²Y represent
the explanatory rate of the model to X and Y matrix respectively, and Q² represents the predictability of the
model. The closer these three indicators are to 1, the more stable and reliable the model is. Q² > 0.5 can
be considered as an effective model, and Q² > 0.9 can be considered as an excellent model. The following
figure shows the OPLS-DA validation plot with the horizontal coX-axis indicating the model R²Y, Q² values,
and the vertical coY-axis is the frequency of the model classification effect. Bootstrapping on the model was
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performed for 200 times and if Q² P = 0.02, it indicates that the predictability of four random grouping models
is better than that of the OPLS-DA model in the Permutation detection. If R²Y P = 0.545, it indicated that
there were 109 random grouping models in the Permutation detection, whose explanation rate of Y matrix
was better than that of the OPLS-DA model. In general, P < 0.05 is the best model.

Fig 17: OPLS-DA verification diagram

Note: The X-axis represents the R2Y and Q2 values of the model, and the Y-axis is

the frequency of the model classification effect in 200 random permutation and com-

bination experiments. The orange in the figure represents the randomization model

R2Y, the purple represents the randomization model Q2, and the values represented

by the black arrows represent the R2X, R2Y and Q2 values of the original model.

OPLS-DAverification diagram: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-
DA_permutation.*

4.2.3 OPLS-DA S-plot

The figure below shows the OPLS-DA S-plot. The horizontal axis is the covariance between the princi-
pal components and metabolites, the vertical axis indicates the correlation coefficient between the principal
components and the metabolites. The closer the points are to the top right corner or bottom left corner, the
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more significant the difference in metabolite abundance. Red dots indicate metabolites with VIP value > 1
and green dots indicate metabolites with VIP value <= 1.

Fig 18: OPLS-DA S-plot

OPLS-DAS-plot: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/opls/*_OPLS-DA_SPlot.*

4.3 Dynamic distribution of metabolite content differences

To show the overall metabolite abundance distribution in the samples, metabolites were sorted and plot-
ted based on fold-change values from small to large. The distribution of the ranked metabolites is shown
below with the top 10 up-regulated and top 10 down-regulated metabolites labelled.
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Fig 19: Dynamic distribution of metabolite content difference

Note: In the figure, the X-axis represents the rank number ofmetabolites based on FC

value. The Y-axis represents the log2FC value. Each point represents a metabolite.

The green points represent the top 10 down-regulated metabolites and the red points

represent the top 10 up-regulated metabolites.

Dynamic distribution ofmetabolite content difference: Final report/2.Basic_Analysis/Difference_analysis/
*_vs_*/TopFcMetabolites/*_TopFcDistribution_*.*

4.4 Differential metabolite screening

It is often necessary to combine univariate statistical analysis and multivariate statistical analysis for
large high dimensional datasets such as metabolomics datasets to accurately identify differential metabolites.
Univariate statistical analysis methods include parametric test and nonparametric test. Multivariate statistical
analysis methods include principal component analysis and partial least square discriminant analysis. Based
on the results of OPLS-DA (biological repetition ≥ 3), multivariate analysis of Variable Importance in Projec-
tion (VIP) from OPLS-DA modeling was used to preliminarily select differential metabolites from different
samples. Differential metabolites can further be screened by combining the P-value/FDR (when biological
replicates ≥ 2) or FC values from univariate analysis. The screening criteria for this project are as follows:
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1. Metabolites with VIP > 1 were selected. VIP value represents the effect of the differences between
groups for a particular metabolite in various models and sample groups. It is generally considered that
the metabolites with VIP > 1 are significantly difference.

2. Metabolites with fold change ≥ 2 or fold change ≤ 0.5 were considered as significant and selected.

Partial results from the screening criteria is shown below.

Table 6: Screening results of differential metabolites

Index Compounds Type

mws0943 1,4-Dihydro-1-Methyl-4-oxo-3-

pyridinecarboxamide

down

MWS0559 1,6-anhydro-β-D-glucose up

mws0383 10-Heptadecenoic Acid up

MWSslk080 10-Hydroxydecanoic acid down

Zmpn003698 11,14,17-Eicosatrienoic acid* down

Zmyn004548 12-Oxo-phytodienoic acid up

MWS80007 13-Hydroperoxy-9Z,11E-octadecadienoic acid up

pmb2804 13S-Hydroperoxy-9Z,11E-octadecadienoic acid up

Zmyn004676 17-Hydroxylinolenic acid up

pme3882 2’-Deoxyuridine up

Screening results of differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
*_filter.xlsx

4.4.1 Bar chart of differential metabolites

The following figure shows the result of top 20 differentially expressed metabolites in each comparison
with fold-change value shown as log2 values.
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Fig 20: Bar chart of differential metabolites

Note: X-axis refers to log2FC values of top differential metabolites,the Y-axis refers

to metabolites. Red bars represent up-regulated differential metabolites and green

bars represent down-regulated differential metabolites.

Histogram of multiple difference: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
TopFcMetabolites/*_TopFcBarChart_*.*

4.4.2 Differential metabolite radar map

The top 10 differential metabolites based on absolute value of Fold-change were selected and plotted on
the radar plot.
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Fig 21: Radar map of differential metabolites

Note: The grid lines correspond to the log2FC, The green colored area are formed

from the lines connecting the dots.

Radar map of differential metabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
TopFcMetabolites/*_TopFcRadarChart_*.*

4.4.3 VIP value map of differential metabolites

The top 20 metabolites with the largest VIP value from the OPLS-DA model were selected and plotted.
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Fig 22: VIP values of differential metabolites

Note: The X-axis represents VIP values, and the Y-axis represents metabolites. Red

dots represent up-regulated differential metabolites, and green dots represent down-

regulated differential metabolites

VIP values of differential metabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/ vip-
score/*_vipScore.*

4.4.4 Volcano plot of differential metabolites

Volcano Plot is used to show the relative differences and the statistical significance of metabolites be-
tween two groups. We provided the volcano plot of differential metabolites using different selection criteria
for your consideration. The details of different selection criteria are described in the README document
under the volcano plot directory. In addition, the attached results also provided an interactive web version of
the volcano plot where you can examine the details of each metabolite.
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Fig 23: Volcano plot of differential metabolites

Note: Each point in the volcano plot represents ametabolite with green dots represent

down-regulated differential metabolite, red dots represent up-regulated differential

metabolite, and gray dots represent the detected metabolites but show no significant

differences. The X-axis represents the (log2 FC) value of metabolites between two

groups. The further away from 0 on the X-axis, the greater the fold-change between

two groups. If themetabolites were screened usingVIP+FC, theY-axis will represent

VIP value. The larger the VIP value, the more significant the difference and the more

reliable in the screening process.If the metabolites were screened using VIP + FC +

P-value, the Y-axis will represent the the level of significant differences (-log10P-

value). The size of each dot represents the VIP value.

Volcano maps of differential metabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
vol/*_volcano_*.*

4.4.5 Scatter plot of differential metabolites

The differential metabolites scatter plot is used to show the abundance differences in compound sub-
classes between two groups.
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Fig 24: Scatter plot of differential metabolites

Note: Each dot in the graph indicates a metabolite, and different colors indicate

different metabolite subclasses; the horizontal coordinate indicates the logarithmic

value of the multiplicative difference in the content of a substance in two groups

of samples (log2FC), the larger the absolute value of the horizontal coordinate, the

greater the difference in the content of the substance between the two groups of

samples, and the size of the dot represents the VIP value.

Scatter plot of differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/Scatter/

4.4.6 Hierarchical clustering tree

Hierarchical clustering was performed on different sample groups to form a clustering tree showing the
similarity between samples. Samples in the same cluster have higher similarity.
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Fig 25: Hierarchical clustering tree

Note: Samples with higher similarity are clustered more closely on the clustering

tree.

Hierarchical clustering tree: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/dendrogram/
*_dendrogram.*

4.4.7 Heatmap of differential metabolites

In order to observe the fold-change of differential metabolites more intuitively, we normalized the rela-
tive quantification using unit variance scaling (UV scaling, see appendix for details of calculation formula)
and plotted the results on a heatmap using ComplexHeatmap in R.
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Fig 26: Heatmap of differential metabolites

Note: The X-axis shows the name of the samples and the Y-axis shows the differen-

tial metabolites. Different colors in the heatmap represent the values obtained after

UV scaling and reflects the level of relative quantification. The darker the red, the

higher the quantification. In contrast, the darker the green, the lower the quantifi-

cation. The colored bar on top depicts sample groups. If hierarchical clustering is

performed, the clustering tree will be shown on the left or on the top. If classification

was performed on the compounds, a colored bar will be shown on the left to depict

Level 1 classifications. *_all_heatmap_class: Heatmap by metabolites classifica-

tion, Class represents the first-level classification ofmetabolites. *_all_heatmap_col-

row_cluster: clustering analysis is performed for both metabolites and samples, the

clustering tree on the left side is the metabolite clustering tree, and the clustering tree

on the top is the sample clustering tree. *_all_heatmap_row_cluster: clustering anal-

ysis is performed for metabolites only, the clustering tree on the left is the metabolite

clustering tree.

Heatmap of differentialmetabolites: Final report//2.Basic_Analysis/ Difference_analysis/*_vs_*/heatmap/
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4.4.8 Correlation analysis of differential metabolites

Metabolites may act synergistically or in mutually exclusive relationships amongst each other. The
correlation analysis can help measure the metabolic proximities of significantly different metabolites. This
analysis will help further understand the mutual regulatory relationship between metabolites in the biological
process. Pearson correlation was used to perform correlation analysis on the differential metabolites identified
based on the screening criteria described previously.

Fig 27: Heatmap of correlation of different metabolites

Note: The ID of the metabolites are shown on both horizontal and verticle axses.

The colors represent the Pearson correlation coefficient (r) with the scale seen on

the right (The darker the red, the stronger the positive correlation; the darker the

green the stronger the negative correlation). If there are more than 50 differential

metabolites, the figure will only show the top 50 metabolites based on VIP.

Heatmap of correlation of different metabolites: Final report/2.Basic_Analysis/Difference_analysis/
*_vs_*/cpdCorr/*_cpdCorr_*.*
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Fig 28: Chord diagram of differential metabolites

Note: The outermost layer shows the metabolite ID. The second layer shows log2FC

value, The larger the dot, the larger the log2FC value; The color for the first and

second layer represent Class I metabolite classification. The chords in the inner most

layer reflect the Pearson correlation between the connected metabolites. Red chords

represent positive correlation and the blue chords represent negative correlation. If

there are more than 50 differential metabolites, the figure will only show the top 50

metabolites based on VIP.
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Fig 29: Correlation network diagram of differential metabolites

Note: The points in the figure represent the various differential metabolites, and the

size of the points is related to the Degree of connection. The greater the degree of

connection, the larger the point, i.e. the more points (neighbors) connected to it. Red

lines represent positive correlations and blue lines represent negative correlations.

Line thickness represent the absolute value of Pearson correlation coefficient. The

larger the |r|, the thicker the line. If there are more than 50 differential metabolites,

the figure will only show the top 50 metabolites based on VIP.

Correlation network diagram of differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/
*_vs_*/cpdCorr/*_cpdCorrNet_*.*

4.4.9 Z-value map of differential metabolites

Z-score standardization normalizes the relative content of the differential metabolites by calculating Z-
scores. The Z-score is calculated by z = (x - µ) / σ; Where x is a specific score, µ is the mean, and σ is the
standard deviation. The Z-score plot provides a visual representation of the distribution of each differential
metabolite across groups. The colored dots in the plot represent samples of different groups.
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Fig 30: Z-value map of differential metabolites

Note: The X-axis represents the z-score and the Y-axis represents the differential

metabolites. The colored dots in the plot represent samples of different groups. If

there are more than 50 differential metabolites, the figure will only show the top 50

metabolites based on VIP.

Z-value map of differential metabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/ zS-
core/*_zScore*.*

4.4.10 Violin plot of differential metabolites

A violin plot is a combination of a box plot and a density plot, mainly used to show the data distribution
and its probability density. The box shape in the middle indicates the interquartile range, the thin black line
extending from it represents the 95% confidence interval, the black horizontal line right in the middle is the
median, and the outer shape indicates the density of the data distribution.
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Fig 31: Violin plot of differential metabolites

Note: The horizontal coordinate is the grouping and the vertical coordinate is the

relative content of the differential metabolites (raw peak area). If there are more

than 50 differential metabolites, the figure will only show the top 50 metabolites

based on VIP.

Violin plot of differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/fullViolin/
*_fullViolin*.*

Violin plot of singlemetabolite: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/fullViolin/single

4.4.11 K-Means analysis

K-Means analysis is a method to examine the trend of relative quantification changes of a metabolite
in different sample groups. K-Means is performed based on the Z-score normalized relative quantification
value.
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Fig 32: K-Means diagram of differential metabolites

Note: The X-axis represents the sample names and the Y-axis represents the normal-

ized relative quantification. ”Sub class” represents a group of metabolites with the

same trend and the ”total” represent the number of metabolites in this cluster.

K-Means diagram of differential metabolites: Final report/2.Basic_Analysis/kmeans/kmeans_cluster.*

4.4.12 Venn diagram of differential metabolites

Venn diagram is used to show the number of shared and unique metabolites in different comparison
groups. A petal diagram is used for 5 groups or more.
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Fig 33: Venn diagram of differences among groups

Note: Each circle represents a comparison group, the number in overlapped parts rep-

resents the number of common differential metabolites between comparison groups,

and the number in non-overlapped parts represents the number of unique differential

metabolites in comparison groups.

Venn diagram of differential metabolites: Final report/2.Basic_Analysis/Venn

4.5 Functional annotation and enrichment analysis of differential metabolites with

KEGG database

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database that integrates compounds and genes
into metabolic pathways. The KEGG database enabled researchers to study genes with their expression in-
formation and compounds with its abundances as a complete network.

4.5.1 Functional annotation of metabolites

Metabolites are annotated using the KEGG database (Kanehisa et al., 2000), and only metabolic path-
ways containing differential metabolites are shown. Detailed results are found in the attached results. A
portion of the results is shown below.
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Fig 34: KEGG pathway with detected metabolites

Note: Red circles indicate that the metabolite content was significantly up-regulated

in the experimental group; blue circles indicate that the metabolite content was de-

tected but did not change significantly; green circles indicate that the metabolite

content was significantly down-regulated in the experimental group; and orange cir-

cles indicate a mixture of both up-regulated and down-regulated metabolites. This

allows searching for metabolites that may contribute to the phenotypic differences.

KEGG pathway of differential metabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/Graph/ko*****

Statistical analysis of KEGG database annotation of screened metabolites with significant differences.
Some of the results are as follows:
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Table 7: KEGG annotations for differential metabolites

Index Compounds Type cpd_ID

mws0943 1,4-Dihydro-1-Methyl-4-oxo-3-

pyridinecarboxamide

down C05843

MWS0559 1,6-anhydro-β-D-glucose up -

mws0383 10-Heptadecenoic Acid up -

MWSslk080 10-Hydroxydecanoic acid down C02774

Zmpn003698 11,14,17-Eicosatrienoic acid* down C16522

Zmyn004548 12-Oxo-phytodienoic acid up C01226

MWS80007 13-Hydroperoxy-9Z,11E-

octadecadienoic

acid

up -

pmb2804 13S-Hydroperoxy-9Z,11E-

octadecadienoic

acid

up C04717

Zmyn004676 17-Hydroxylinolenic acid up C16346

pme3882 2’-Deoxyuridine up C00526

Table 8: Enrichment statistical of KEGG annotations for differential metabolites

ko_ID Sig_compound compound Sig_compound_all compound_all

ko00760 5 13 81 263

ko01100 66 212 81 263

ko01040 2 11 81 263

ko00592 3 13 81 263

ko01110 26 90 81 263

ko00591 7 18 81 263

ko00240 6 18 81 263

ko01232 7 24 81 263

ko02010 15 49 81 263

ko00290 3 7 81 263

KEGGannotations for differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/*_filter_anno.xlsx

Enrichment statistical of KEGG annotations for differential metabolites: Final report/2.Basic_Analysis/
Difference_analysis/*_vs_*/enrichment/*_KEGG.xlsx

4.5.2 KEGG classification of differential metabolites

The significant differential metabolites were classified based on pathway annotation. The results are as
follows:
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Fig 35: KEGG classification of differential metabolites

Note: the Y-axis shows the name of the KEGG pathway. The number of signifi-

cant differential metabolites and the proportion of the total significant differential

metabolites are shown next to the bar plot.

KEGGclassification of differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/*KEGG_barplot.*

4.5.3 Hierarchical Cluster Analysis of differential metabolites in KEGG pathway

We clustered the compounds in each pathway base on their quantification in order to examine the pattern
of metabolite changes in different sample groups. Only pathways with at leaset 5 differential compounds were
analyzed.

45



Fig 36: Clustering heat map of differential metabolites in KEGG pathway

Note: The X-axis shows the name of the samples and the Y-axis shows the differ-

ential metabolites. Different colors in the heatmap represent the values obtained

after normalization and reflects the level of relative quantification. The darker the

red, the higher the quantification. In contrast, the darker the green, the lower the

quantification. The colored bar on top depicts sample groups. If hierarchical clus-

tering is performed, the clustering tree will be shown on the left. If classification

was performed on the metabolites, a colored bar will be shown on the left to depict

compound classifications.

Clustering heat map of differential metabolites in KEGG pathway: Final report/2.Basic_Analysis/ Dif-
ference_analysis/*_vs_*/enrichment/KEGG_heatmap/*_KEGG_heatmap*.*

4.5.4 KEGG enrichment analysis of differential metabolites

KEGG pathway enrichment analysis was conducted based on the annotation results. We calculated the
Rich Factor for each pathway, which is the ratio of the number of differential metabolites in the corresponding
pathway to the total number of metabolites annotated in the same pathway. The greater the value, the greater
the degree of enrichment. P-value is calculated using hypergeometric test as shown below:
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𝑃 = 1 −
𝑚−1
∑
𝑖=0

(𝑀𝑖 )(𝑁−𝑀𝑛−𝑖 )
(𝑁𝑛)

N represents the total number metabolites with KEGG annotation, n represents the number of differential
metabolites in N, M represents the number of metabolites in a KEGG pathway in N, and m represents the
number of differentialmetabolites in aKEGGpathway inM. The closer the p-value is to 0, themore significant
the enrichment. The size of the dots in the figure represents the number of significantly different metabolites
enriched in the corresponding pathway. The top 20 pathways in terms of P-value are plotted.

Fig 37: KEGG enrichment diagram of differential metabolites

Note: The X-axis represents the Rich Factor and the Y-axis represents the pathway.

The color of points reflects the p-value. The darker the red, the more significant

the enrichment. The size of the dot represents the number of enriched differential

metabolites.

KEGGenrichment diagram of differentialmetabolites: Final report/2.Basic_Analysis/Difference_analysis/
*_vs_*/enrichment/*_KEGG_Enrichment.*
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4.5.5 Overall changes in KEGG metabolic pathway

Differential Abundance Score (DA Score) is a score based on changes in metabolites in a pathway. DA
Score can capture the overall changes of all Differential metabolites in a pathway with the following formula:

DA score = up regulated metabolites in a pathway − down regulated metabolites in a pathway
Total number of metabolites annotation in a pathway

The top 20 pathways in terms of P-value are plotted.
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Fig 38: Difference abundance score

Note: The Y-axis represents the name of differential pathway, and the X-axis rep-

resents DA Score. DA Score reflects the overall change of all metabolites in the

metabolic pathway. A Score of 1 indicates that the expression trend of all identi-

fied metabolites in this pathway is up-regulated, and -1 indicates that the expression

trend of all identified metabolites in this pathway is down-regulated. The length of

the line represent the absolute value of DA-score while the size of the dot at the end

of the line represent the number of differential metabolites. A dot on the left of the

line represent the pathway is down-regulated; a dot on the right of the line represents

the pathway is up-regulated. The color of the line and dot represent the p-value.

The darker the red, the smaller the p-value and the darker the purple, the larger the

p-value.

Difference abundance score: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/enrichment/
*_KEGG_DA_score.*

The table of difference abundance score: Final report/2.Basic_Analysis/Difference_analysis/*_vs_*/
enrichment/*_KEGG_DA_score.xlsx
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6 Appendix

6.1 Software list and version

Table 9: Software used

Analysis Software Version Method

KNN R (impute) 1.56.0 default parameters

PCA R (base package) 4.1.2 UV (unit variance scaling)

Heatmap R (ComplexHeatmap) 2.9.4 UV (unit variance scaling)

Pearson Correlation R (base package) 4.1.2 -

Correlation plot R (corrplot) 0.92 -

OPLS-DA R (MetaboAnalystR) 1.0.1 log2 + mean centering

Radar plot R (fmsb) 0.7.1 -

Chord diagram R (igraph; ggraph) 1.2.11; 2.0.5 -

Network diagram R (igraph) 1.2.11 -

K-Means R (base package) 4.1.2 UV (unit variance scaling)

In all the analyses of this project, two main approaches were taken to pre-process the data, which were
calculated as follows:

(1) Unit variance scaling (UV)

Unit variance scaling (UV), also known as Z-score normalization / auto scaling, is a method of normal-
izing data based on the mean and standard deviation of the original data. The processed data conforms to a
standard normal distribution with a mean of 0 and a standard deviation of 1.

Calculation method:

Original data centering divided by the standard deviation of the variable.

The formula is as follows:

𝑥′ = 𝑥 − 𝜇
𝜎

µ is the mean value and σ is the standard deviation.

(2) Zero-centered (Ctr)

Calculation method:

Original data minus the mean value of the variable.
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The formula is as follows:

𝑥′ = 𝑥 − 𝜇

6.2 FAQ

1.There are two TIC diagrams and two MRM diagrams, each with an “N” and a “P” designation.
What do they mean?

A: “N” stands for negative-ion mode; “P” stands for positive-ion mode.

2.Where are the Pearson correlation coefficient data files?

A: Original file path

Final reports/1.Data_Assess/correlation_analysis/all_correlation_metabolites_pearson*;

There is also the result file from conducting Spearman correlation analysis.Original file path:

Final reports/1.Data_Assess/correlation_analysis/all_correlation_metabolites_spearman*.

3.How to interpret the values in All_sample_data? What is the quantification and the unit of mea-
surement for a metabolite?

A: The data in the table uses scientific counting method, for example, 1.22e+02 means 1.22×10², which
is also 122. If you are not used to it, you can change the number formatting. This value is the relative content
of metabolites without units. It is calculated by calculating the peak area formed by the characteristic ions
of each substance in the detector (although the absolute content of the substance cannot be quantified, the
detection conditions are consistent, which can be used to compare the differences of the same substance in
different samples)

4.How does the widely targeted metabolomics identify the metabolite? Can you provide the scoring
value of the detected metabolite?

A: There are three levels of target identification. Level 1: concordance of MS/MS Spectrometry and
retention time to metabolites in the database with a score of 0.7 or above; Level 2: concordance of MS/MS
Spectrometry and retention time to metabolites in the database with a score between 0.5 and 0.7; Level 3:
The Q1, Q3, RT, DP, and CE of the metabolite matches to a metabolite in the database.

There is no scoring value in the widely targeted metabolomics; Scoring only applicable to non-targted
metabolomics. It can be understood from the perspective of detection methodology. Widely targeted
metabolomics is based on MRM scanning of 5 parameters (DP, CE, RT, Q1, Q3) to detect the relative
content of metabolites in different samples. You may refer to the literature on widely targeted metabolomics
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methodology: Chen, W., Gong, L., Guo, Z., et al., A Novel Integrated Method for Large-Scale Detec-
tion, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice
Metabolomics. Molecular Plant, 2013, 6(6):1769-1780.

5.How are mass spectra peaks corrected?

A: The instrument automatically calibrates the mass axis according to the ions in the standard chemical
equipped with AB Sciex.

6.Can you explain the concept of principal component analysis? In the principal component analysis,
the greater the inter-group variation and the smaller the intra-group variation, the better? Is there a
limit?

A: Assuming that the number of samples is N and the number of metabolites detected is M.

The raw data represents n points distributed in an m-dimensional space.

PCA is to use the least square method to find a straight line such that the distance between all samples
and the straight line is the smallest. The linear direction also reflects the largest difference between samples.

On this basis, the next most significant line can be found in the orthogonal direction of the line, and so
on.

The principal component diagram does not look at the percentage of the principal component, but
whether the biological replicates within the group cluster well together, and whether the groups (different
groups) separate well. This is mainly to judge the overall quality of the biological replicates within the group
and the size of the difference between groups.

7.I want to focus on the content of A and B metabolites in the samples. When calculating the differ-
ences between samples, can I sum the value of these two metabolites together for comparison?

A: No. Widely targeted metabolomics obtains relative quantification. There are no methods to optimize
for a single metabolite in the extraction method, and thus we cannot guarantee the complete extraction of spe-
cific metabolites in the sample. Furthermore, due to the physical and chemical characteristics of metabolites
themselves, their ionization efficiency are not the same, resulting in the difference in final detection of signal.
For example, two substances, such as A and B with 1 nmol each analyzed by LC – MS may show drastically
different signal response values caused by the sensitivity of detection for different material, which in turn
impacted by their chemical properties such as ionization efficiency and fragmentation. Therefore, the values
between different metabolites cannot be added together or compared directly. Only the same metabolite from
different samples can be used for comparison.

8.In screening for differential metabolites in a comparison of A_vs_B, the up-regulated and down-
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regulated metabolites descdribes changes in which group?

A: In the process of differential metabolite screening, if the grouping information given is A_vs_B, the
comparison calculation formula defaults to A/B. The upregulation of the final differential metabolite indicates
that the metabolite has A high relative content in A and a low relative content in B.

9.Can you label the metabolite names on the heatmap?

A: Yes. However, due to the size of the image, such figure is not included in the report. Please check
the actual data file:

Final reports/Basic_analysis/Difference_analysis/A_vs_B/heatmap/A_vs_B_heatmap_*_Compounds.*.

10.Where can I find the common and unique metabolites from the Venn diagram?

A: You can find the data in Basic_analysis/Venn/CF_vs_MT__QG_vs_WT_venn_result, If you open the
Excel table, you can see that there are two TRUE/FALSE columns. Metabolites with two “TRUE” represent
common metabolites. Metabolites with one TRUE and one FALSE indicate metabolite is present in only one
group.

11.The number of annotated differential metabolites inKEGGpathway is inconsistent with the num-
ber of annotated differential metabolites in KEGG database?

A: Metabolites annotated by KEGG COMPOUND (numbered C*****) do not necessarily have KEGG
PATHWAY annotations (ko*****)
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