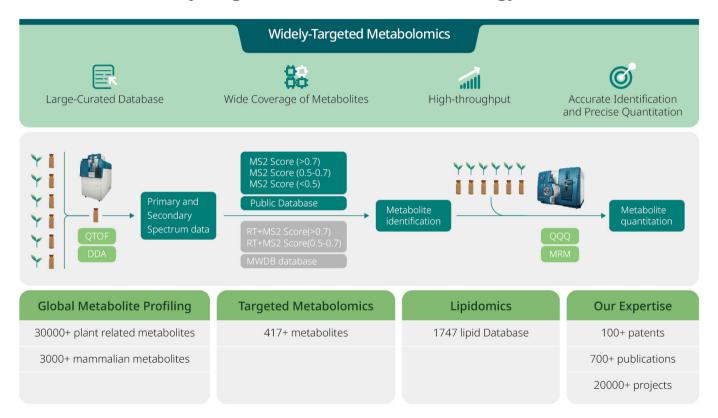


Genes will tell you what may happen, Metabolites tell you what is happening or has happened.

Epinephrine

Polyphenol **Fatty Acid**



Uric Acid Blood Sugar Blood Fat

Artemisinin Taxol

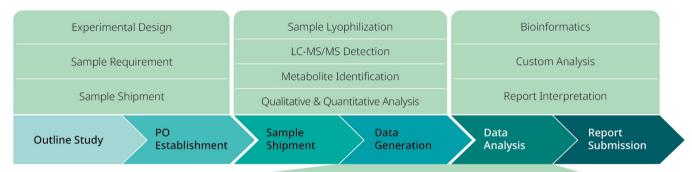
Ginsenoside

The Power of Widely-Targeted Metabolomics Technology

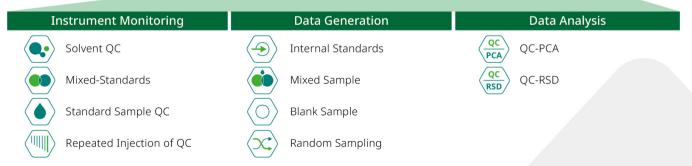
Comprehensive Identification Strategy

Accurate Identification based on our large-curated in-house database.

In-house Plant Metabolites Database


Types	Number	Representative compounds
Flavonoids	3700+	Rutin, Phloretin, Phelligrin A, Hesperetin, Pelargonidin-3-O-glucoside
Phenolic acids	2100+	Chlorogenic acid, Momordicoside A, Oleuropein, Salvianolic acid A
Alkaloids	7000+	α-Solanine, Verticine, Arecoline, DIMBOA, Lycorenine
Terpenoids	+0008	Artemisinine, Genipin, Cucurbitacin B, Ecliptasaponin A
Quinones	700+	Emodin, Obtusin, Lapachone, Shikonin, Tectograndone
Steroid	1300+	Asparagoside C, Polyphyllin I, Tigogenin, Digitonin, Oleandrin
Tannins	240+	Ellagic acid, Gemin D, Casuariin, Punicalin, Chebulagic acid
Ligans	1000+	Honokiol, Syringaresinol, Arctigenin, Pinoresinol, Sesamin
Glucosinolates	150+	Sulforaphane, Gluconasturtiin, Sinalbin, Sinigrin
Coumarins	+008	Umbelliprenin, Psoralen, Glycycoumarin, Xanthotoxol, Scopolin
Organic acids	270+	Succinic acid, Malic acid, Citric Acid, Quinic Acid, Shikimic acid
Vitamins	50+	Vitamin C, Vitamin B2, Vitamin A1, Vitamin U, Nicotinic acid
Amino acids and derivatives	540+	Tryptophan, Theanine, Beauvericin, Dencichin, γ-Glu-Cys
Nucleotides and derivatives	120+	Adenine, Cytosine, Thymine, Inosine, Adenosine 5'-monophosphate
Saccharides and Alcohols	340+	Glucose, Sucrose, Fucose, Xylitol, Maltose, Raffinose
Lipids	500+	Linolenic acid, 4-Hydroxysphinganine, Lauric acid, Myristic Acid
Others	3200+	Aflatoxin B1, Secoxyloganin, Kavain, Terreic acid, Mansonone E
Total		30000+

Precise Quantitation


• Gold Standard for Quantitation
Using MRM mode from AB SCIEX Triple Ouad 6500+

• Rigorous Quality Control

Monitoring all aspects of experimentation from sample preparetion to data analysis.

Quality Control

Solutions for All Industries

- Plant growth and development
- Plant stress response
- Plant-microbe interactions

- Food source
- Food processing

- Agriculture
- Nutritional value
- Food quality

- · Genetic breeding
- Feed nutrition
- Animal diseases

- Mechanism of treatment
- Toxic side effect evaluation

Environmental toxicology research

Comprehensive Analytical Portfolio

Global Metabolite Profilling	Targeted Metabolomics	Multi-Omics
Widely-Targeted Metabolomics for Plants	Phytohormone	Transcriptome
Quantitative Lipidomics for Plants	Anthocyanin	Microbiome
Flavonoids Metabolomics	Carotenoids	Proteomics
Primary Metabolome	Targeted Assay	Transcriptome+Metabolomics
Secondary Metabolome	Customized Services	Microbiome+Metabolome
		Genome+Metabolome

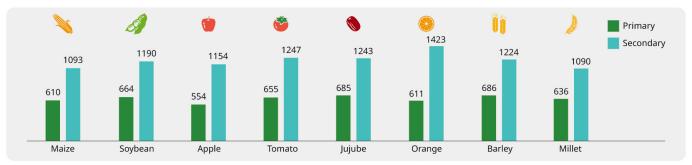
Widely-Targeted Metabolomics is an innovative metabolomics method that combines the benefits of untargeted metabolomics and targeted metabolomics to achieve high-throughput identification and precise quantitation of large number of metabolites. This methodology is especially useful in plant metabolism research where the number of metabolites far exceeds those in animals. At Metwarebio, our Widely-Targeted Metabolomics approach stands out from many others with features such as:

Large Curated Database

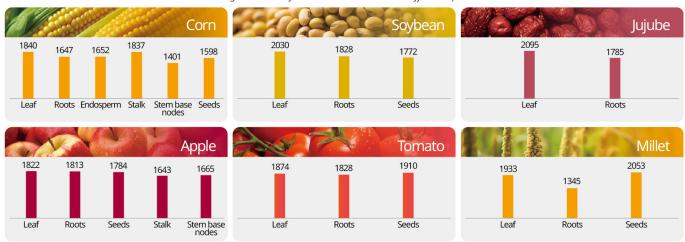
Over 30,000 purified chemical standards from over 1000 plant species.

Accurate Identification

Combining AB SCIEX Q-TOF 6600 ultra-high resolution mass spectrum with our in-house curated database to achieve accurate metabolite identification.

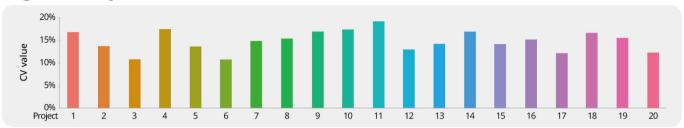

Precise Quantitation

Using the **QQQ** gold standard detection mode (MRM) and 10 rigorous QC indicators



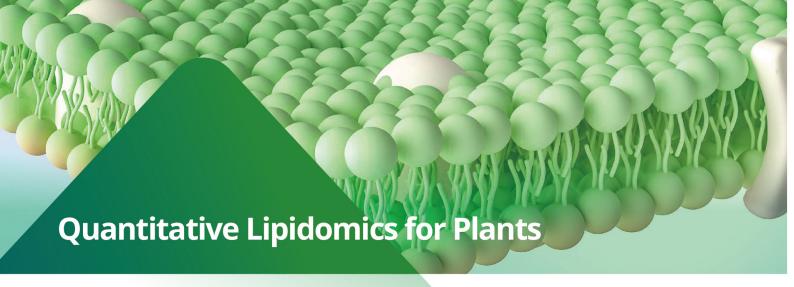
High Quality Data

Results of our services have been cited in over **500** publications.



Average number of metabolites detected in different species.

Number of metabolites detected across various tissues.


High Stability

Highly stable detection for the widely-targeted metabolic analysis.

Selected Publications

Year	Journal	Title	Species
2023	Ecotoxicology and Environmental Safety	Deciphering the toxicity mechanism of haloquinolines on Chlorella pyrenoidosa using QSAR and metabolomics approaches	Chlorella
2023	Food Research International	Widely targeted metabolomic analysis revealed the effects of alkaline stress on nonvola- tile and volatile metabolites in broomcorn millet grains	Millet
2023	Food Chemistry	Impact of low temperature on the chemical profile of sweet corn kernels during post-harvest storage	Maize
2022	Foods	Comparative Analysis of Fruit Metabolome Using Widely Targeted Metabolomics Reveals Nutritional Characteristics of Different Rosa roxburghii Genotypes	Rosa Roxburghii
2022	Food Chemistry	Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics	Rice
2022	Postharvest Biology and Technology	Widely targeted metabolomics analysis reveals the effect of exogenous auxin on postharvest resistance to Botrytis cinerea in kiwifruit (Actinidia chinensis L.)	Kiwi Fruit
2022	Food Research International	Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits	Vegetables
2021	Food Chemistry	Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen	Honey
2021	LWT - Food Science and Technology	Widely targeted metabolomics characterizes the dynamic changes of chemical profile in postharvest peanut sprouts grown under the dark and light conditions	Peanut

Based on the Widely Targeted Metabolomics approach and a database of 1747 plant lipids, the Quantitative Lipidomics Service for Plants allows high throughput analysis of plant lipids in all types of plant materials.

Wide Coverage

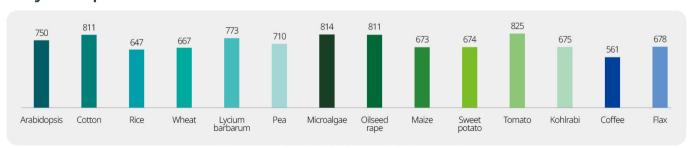
1747 lipids, covering 6 major lipid classes

Extensive Project Experience

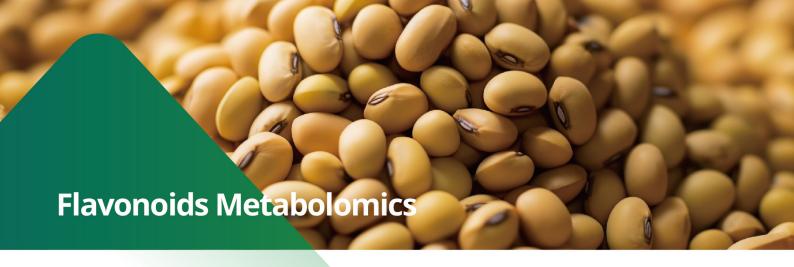
Detected 500-800 lipids in over 100 species

Precise Quantitation

Quantitation using 23 isotopic internal standards


Comprehensive Data Analysis

Over 24 of analyses to fast track data exploration



Classes	Total number	Abbr.	Num	Abbr.	Num	Abbr.	Num
Fatty acyls	51	FFA	51				
		MG	19	DG	136	TG	490
Glycerolipids	958 -	MGDG	73	DGDG	58	SQDG	38
diycerolipius	956	DGTS	81	LDGTS	22	DGGA	1
		ADGGA	7	DGCC	33		
	530	LPA	13	LPC	33	LPE	25
		LPG	14	LPI	15	LPS	17
Glycerophospholipids		PA	41	PC	96	PE	93
		PG	53	PI	69	PS	39
		PMeOH	22				
Sphingolipids	167 -	Sph	8	Cert	42	Cer	61
Springonplus	107	HexCer	56				
Sterol lipids	38	CE	38				
Prenol lipids	3	CoQ	3				

Project Experience

Average number of lipids detected in different species.

Flavonoids are polyphenols produced through the phenylalanine metabolic pathway and it plays an essential role in plant physiological processes such as rhizogenesis, pollination, pathogenic bacterium stress, and ultraviolet stress response. Furthermore, it is a strong antioxidant widely used in human disease treatment and food supplements. Metwarebio's Flavonoid Metabolomics is based on our unique Widely-Targeted Metabolomics process to simultaneously detect more than 3700 flavonoids in plant samples.

Extensive and Wide-coverage

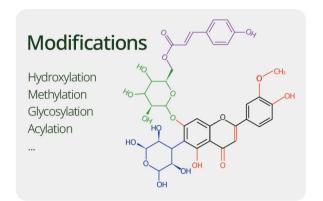
12 classes, 3700+ specific flavonoid compounds

Improved Metabolic Maps

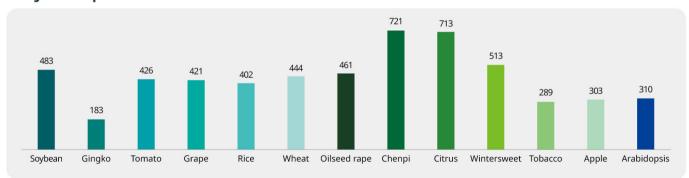
Improved upon the three flavnoid KEGG pathways maps

Accurate Identification

Using a proprietary approach that matches project substances spectra data with MWDB spectra data



Precise Quantitation


Using the gold standard detection mode (MRM) based on QQQ for quantitation

Six Flavonoid Classes

Project Experience

Average number of flavonoids detected in different species.

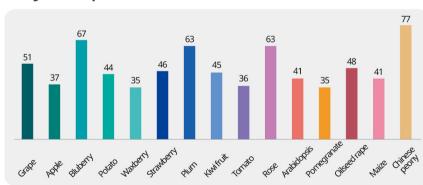
Anthocyanidin is a class of water-soluble pigment compounds that widely exist in plants. Free anthocyanins are rare under natural conditions and mainly exist in the form of glycosides. MetwareBio's anthocyanin assay is a targeted LC-MS/MS method that will detect and obtain absolute and semi-quantitation of 108 compounds in the anthocyanin metabolic pathway.

Wide Coverage

108 anthocyanidin metabolites over 8 different types.

Absolute Quantitation

41 absolute quantification, r > 0.99 67 semi-quantification


High Sensitivity

Detection at µg/g level


List of Metabolites

Category	No.	Representative substance
Cyanidins	17	Cyanidin-3-O-galactoside, Cyanidin-3-O-rutinoside
Delphinidins	16	Delphinidin-3-O-glucoside, Delphinidin-3-O-arabinoside
Flavonols	9	Kaempferol-3-O-rutinoside, Rutin, Naringenin-7-O-glucoside
Malvidins	13	Malvidin, Malvidin-3-O-arabinoside, Malvidin-3-O-galactoside
Pelargonidins	19	Pelargonidin-3-O-arabinoside, Pelargonidin-3-O-glucoside
Peonidins	17	Peonidin-3-O-galactoside, Peonidin-3-O-rutinoside
Petunidins	11	Petunidin-3-O-sambubioside, Petunidin-3,5-O-diglucoside
Procyanidins	6	Procyanidin A1, Procyanidin B1, Procyanidin C1

Project Experience

Number of anothcyanins detected from various tissues.

Phytohormone is also known as plant natural hormone or plant endogenous hormone. It refers to some trace organic compounds produced in plants that can regulate (promote or inhibit) their own physiological processes. Based on LC-MS/MS technology, MetwareBio has developed a sensitive method for the plant hormone detection, covering **108** phytohormones including ABA, Auxin, CK, ACC, GA, JA, SA and SL.

Complete Variety

108 plant hormones

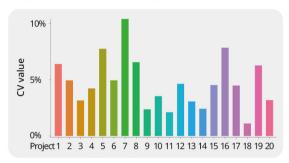
High Sensitivity

AB Sciex QTRAP 6500 LC-MS platform, ng/g level

Extensive Experience

More than **2000** project experiences covering **500**+ species

Quantitative Accuracy


External standard + Internal standard method, r > 0.99

List of Metabolites

Products	Compounds List			
Phytohormone family bucket (108 compounds)	Auxin (27) Jasmonates (11) Cytokinins (40) Abscisic Acid (3) OH OH OH Salicylates (6) ACC (1) Strigolactones (2) Gibberellins (18)			
GAs (18 compounds)	GA ₁ /GA ₃ /GA ₄ /GA ₅ /GA ₆ /GA ₇ /GA ₈ /GA ₉ /GA ₁₅ /GA ₁₉ /GA ₂₀ /GA ₂₄ /GA ₂₉ /GA ₃₄ /GA ₅₁ / GA ₅₃ /GA ₁₂ -ald/GA ₄₄			

High Stability

The detected metabolites showed a coefficient of variation (CV) of less than11% in mixed QC samples.

Selected Publications

Year	Journal	Title	Species
2023	Journal of Experimental Botany	Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus	Watermelon
2023	Horticulture Research	Multifaceted regulatory functions of CsBPC2 in cucumber under salt stress conditions	Cucumber
2023	Nature Plants	Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite–host interactions	Balanophora
2023	Nature Communications	UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination	Rice
2023	Plant Physiology	Plant extracellular self-DNA inhibits growth and induces immunity via the jasmonate signaling pathway	Arabidopsis
2022	Nature Communications	Variation in the fruit development gene POINTED TIP regulates protuberance of tomato fruit tip	Tomato
2021	New Phytologist	Genetic variation in YIGE1 contributes to ear length and grain yield in maize	Maize
2020	Nature Communications	UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice	Rice
2020	Cell	Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution	Banyan tree

Delivering absolute quantitation of **68 carotenoid compounds** with 21 chemical standards applicable to wide varieties of species and tissue types.

Quantitative Accuracy

Quantitation using external standard method, linear standard curve > 0.99

High Sensitivity

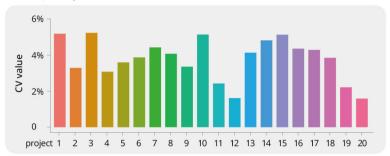
Detection at µg/g level

Broad Coverage

68 carotenoids, including lycopene, β -carotene, octahydrolycopene, lutein, etc. Contact us for a full list

Rich Experience

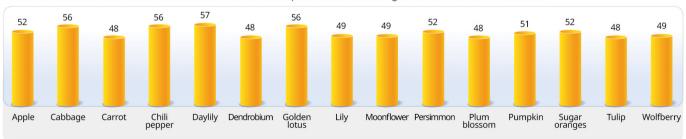
Participated on more than 1000 projects covering 300+ species and published in Nature Communications, The Plant Journal, Food Chemistry and others


List of Metabolites

No.	Carotenoids Panel	No.	Carotenoids Panel
1	α-carotene	10	β-cryptoxanthin
2	antheraxanthin	11	astaxanthin
3	lycopene		phytofluene
4	zeaxanthin	13	capsanthin
5	violaxanthin	14	(E/Z)-phytoene
6	γ-carotene	15	ε-carotene
7	neoxanthin	16	α-cryptoxanthin
8	β-carotene	•••	
9	lutein	68	capsorubin

Contact for a full list.

High Stability


The detected metabolites showed a coefficient of variation (CV) of less than 6% in mixed OC samples.

Coefficient of Variation of energy metabolites detected over 20 projects.

Project Experience

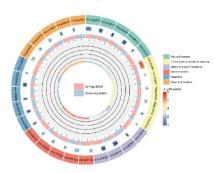
A total of 68 carotenoids could be detected from different species, with an average detection of 50 carotenoids.

Average detected carotenoids in different species.

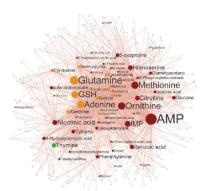
In systems biology research, biological processes and gene regulatory networks are complex and dynamic. It is often insufficient to use a single dataset to study systems biology. Correlating transcriptomic data that has a large number of differentially expressed genes with differential metabolites detected by metabolomics can pinpoint key genes, metabolites, and metabolic pathways that are closely associated with internal changes in the system, and thereby explain biological problems in a more holistic approach.

Coexpressed transcriptome and metabolome

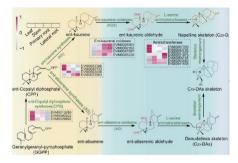
Converged metabolic pathway



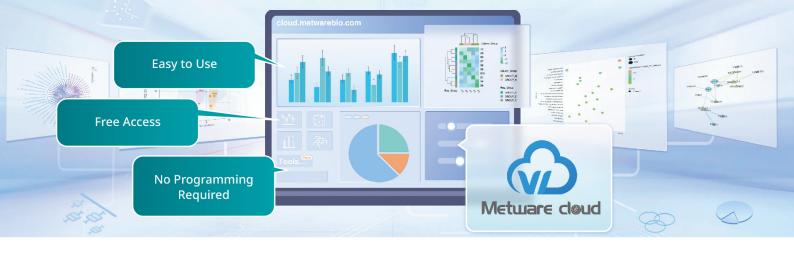
Enable major regulation networks construction



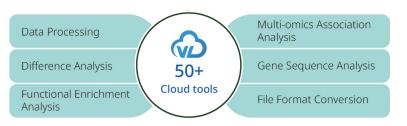
Gain holistic view of biological systems


Data Analysis

Gene enrichment circle map


Correlation network

Converging metabolic pathway


Selected Publications

Year	Journal	Title	Species
2023	New Phytologist	A comprehensive metabolic map reveals major quality regulations in red flesh kiwifruit (Actinidia chinensis)	Kiwifruit
2023	Plant Physiology	Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning	
2023	Plant Biotechnology Journal	The miR156b–GmSPL2b module mediates male fertility regulation of cytoplasmic male sterility-based restorer line under high-temperature stress in soybean	Soybean
2022	PNAS	A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice	Rice
2021	Science Advances	Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H+-ATPase 2	Arabidopsis
2020	Molecular Plant	MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle	Tomato

Analyze Metabolomics Data With Ease

Cloud Tools

Cloud Process

Customize analysis parameters

Get started today!

https://cloud.metwarebio.com/

Metabolomics Sample Requirements

Tissues	Sample type	Recommended sample size	Minimum sample size	Applicable product
Plant Tissue	Stem, Shoot, Node, Leaf, Root, Flower, Fruit, Callus	300mg	600mg	Widely-Targeted Metabolomics for Plants, Quantitative Lipidomics, Flavonoids, Anthocyanin, Phytohormone and Carotenoids
Liquid Sample	Root Exudates	10mL	3mL	Plant Widely-Targeted Metabolomics

Transcriptomics Sample Requirements

Sample Type	Minimum sample saize	Storage and to	ransportation
Whole Blood	2ml		For RNAseq
Tissue	200mg	For LC-MS •Snap freeze in liquid nitrogen.	 Prepare whole blood with 3x Trizol Resuspend cells with 1ml TRIzol for every
Cultured Cells	5 x 10 ⁶ cells	•Store in -80°C. Delivery with dry ice.	5x106 cells. • Snap freeze materials in liquid nitrogen
Plant Materials	300mg		and store all materials in -80°C.

If your samples are not listed above, contact us please!

Innovative Metabolomics Insights for Better Health

Metware Biotechnology Inc. (MetwareBio) is a metabolomics CRO focusing on developing and applying innovative metabolomics technologies to life science and health research. Based on the high-throughput, ultra-sensitive and patented 'widely targeted metabolomics' technology, as well as large-curated metabolite database, MetwareBio offers 'one-stop metabolomics and multi-omics research and analysis services' for research institutes, hospitals and pharmaceutical companies.

MetwareBio's technical achievements have been presented and published in over 700 publications, including Cell, Nature Genetics, PNAS, Nature Communications, National Science Review, and many other international peer-reviewed journals. Working with MetwareBio means you have all the metabolomics expertise supporting your research and development.

10

Data QC Indicators

3000+

Verified Biomedical Metabolites Database 30,000+

Purified Plant Metabolites Database

8A Henshaw Street, Woburn, MA 01801 www.metwarebio.com