
Proteomics Services

The Power of Our Proteomics Technology

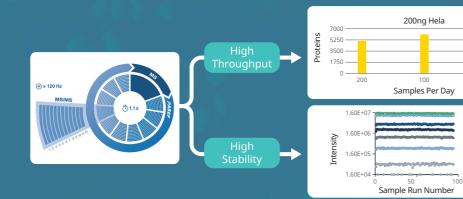
Challenges in proteomics: limited sample volumes, large cohort sample, low instrument resolution.

PASEF Advantages

Achieving excellent detection throughput and stability with more proteins detected by less sample size using dual TIMS and PASEF technology.

60

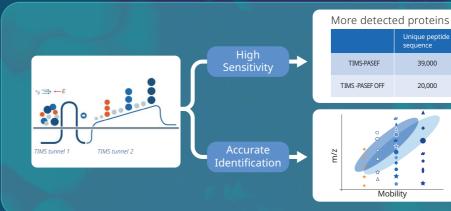
 HSP90AA1 HSPA8


• LDHB

ACLY

IPO5

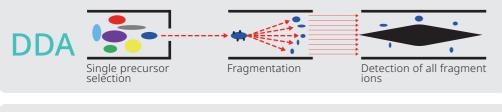
ANXA6

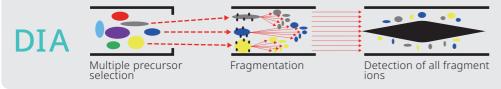

PAFAH1B2

Hardware Advantages

Our proteomics offer outstanding detection sensitivity and accuracy with an additional dimension of ion

Proteins

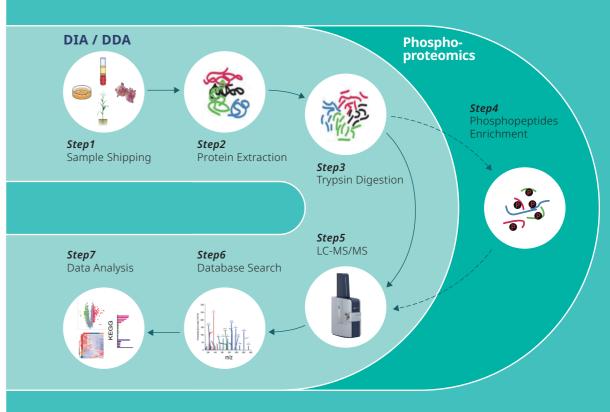

5,200

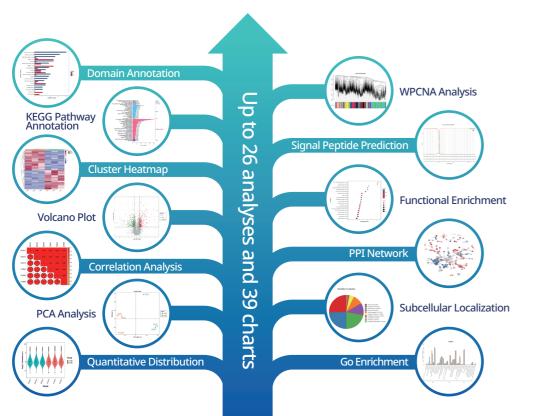

3,200

MS:MS based.

CCS-enabled

Comprehensive Proteomics Analysis




Which Proteomics Approach is for You?

Class Services	DIA Quantitative Proteomics	DDA Quantitative Proteomics	Phospho- proteomics	TMT Labled Quantitative Proteomics
Acquisition Mode	DIA-PASEF	DDA-PASEF	DDA-PASEF	DDA
Lables	No	No	No	Yes
Qualitation	MS2	MS2	MS2	MS2
Quantitation	MS2	MS1	MS1	MS2
Application Scope	No sample limitations	No sample limitations	No sample limitations	Sample size limitations

Workflow

Comprehensive Analytical Report

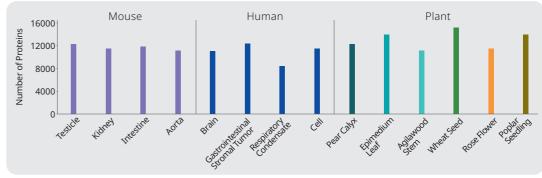
Insightful Solutions, Infinite Potential

Medical Research Disease Mechanisms, Molecular Diagnosis, Biomarker Development, Drug Targets

Animal Research Reproductive Development, Disease Mechanisms, Nutrient Metabolism, Animal Toxicology

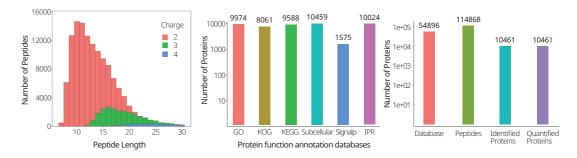
Plant Research Reproductive Development, Abiotic Stress Response, Disease Resistance, Crop Improvement

Microbiology


Pathogenic Mechanisms, Drug Resistance, Stress-Related Proteins Screening, Environmental Impact Mechanisms

DIA Quantitative Proteomics

DIA Quantitative Proteomics utilizes timsTOF HT mass spectrometer and diaPASEF (parallel accumulation-serial fragmentation) acquisition mode to achieve qualitative and quantitative protein analysis. This allowed faster scanning speed and enhanced ion utilization, which drastically improved identification accuracy, coverage, sensitivity, and throughput in protein detection with smaller sample input.


Project Experience

Average number of proteins identified

Case Study

Mouse tissue DIA quantitative proteomics results.

DDA Quantitative Proteomics

DDA Quantitative Proteomics utilizes timsTOF HT spectrometer and the ddaPASEF (parallel accumulation-serial fragmentation) acquisition mode to achieve qualitative and quantitative analysis. DDA Quantitative Proteomics offers simplicity in operation, free from expensive labeling reagents, reduced data complexity, and improved detection sensitivity.

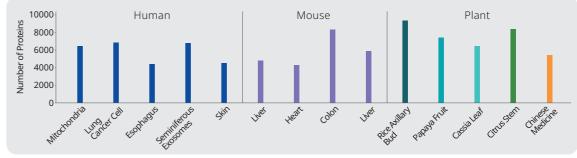
Sample specific protein extraction

Minimize sample manipulation for intact biological characteristics

Accurate qualitative and quantitative analysis with excellent data stability

High sensitivity with more low-abundance proteins detection

Data-Dependent Acquisition Mode


In the ddaPASEF acquisition mode, precursor ions with high ion intensity are selected from the MS1 spectra to set the mass spectrum scan range to specific narrow mass windows. The selected target precursor ions are sequentially fragmented in the MS2 spectra, with their retention time, mass-to-charge ratio, ion intensity, and ion mobility recorded for subsequent protein qualitative and quantitative analysis.

Survey scan & precursor selection

Fragmentation of selected precursors

Project Experience

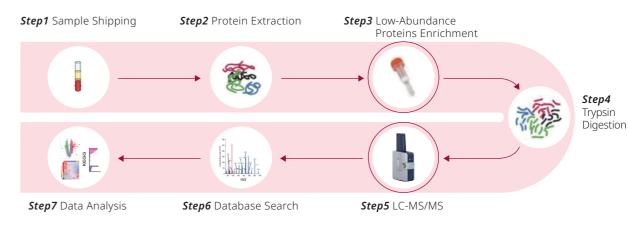
Average number of proteins identified

Serum/Plasma Quantitative Proteomics

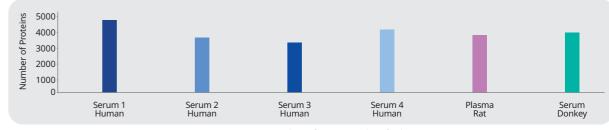
Blood Quantitative Proteomics is a specialized method developed specifically for blood samples. Blood contains a diverse range of proteins with significant differences in abundance, with high-abundance proteins dominating. In conventional proteomics, signals from low-abundance proteins relevant to many disease indicators in the blood are often overshad-owed by signals from high-abundance proteins, resulting in fewer detected proteins. Our quantitative blood proteomics approach first enriches the middle-to-low abundance proteins in the blood using methods such as high-abundance protein depletion or low-abundance protein enrichment. Subsequently, the samples are analyzed using the diaPASEF scanning mode, which offers high throughput, increased protein detection, and improved depth of analysis.

Efficient low-abundance proteins enrichment using magnetic beads

High-throughput 4D protein profiling detection technology



Profound detection depth with more low-abundance proteins detected



High sensitivity and resolution mass spectrometry platform

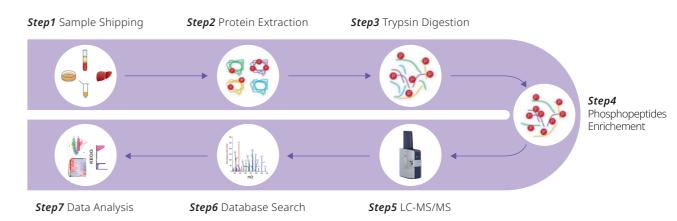
Workflow

Project Experience

Average number of proteins identified

Phosphoproteomics

Phosphoproteomics aims to identifying phosphorylated proteins and peptides in diverse samples, accurately localizing and quantifying phosphorylation sites, and ultimately elucidating their biological functions.



High sensitivity and resolution mass spectrometry platform



High-throughput 4D protein profiling detection technology

Workflow

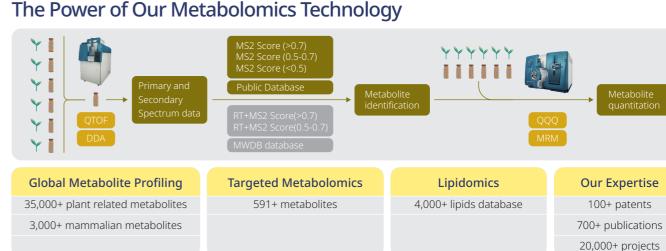
Project Experience

Average number of phosphorylated sites identified

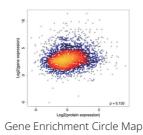
Transcriptome + Proteome + Metabolome

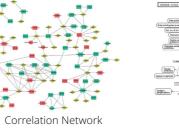
In systems biology research, biological processes and gene regulatory networks are complex and dynamic. It is often insufficient to use a single dataset to study systems biology. Correlating transcriptomic data that has a large number of differentially expressed genes together with differential proteins detected by proteomics, and metabolites detected by metabolomics, can pinpoint key genes, proteins, metabolites, and metabolic pathways that are closely associated with internal changes in the system, and thereby explain biological problems in a more holistic approach.

Coexpressed transcriptome, proteome and metabolome

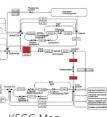


Converged metabolic pathway

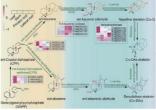


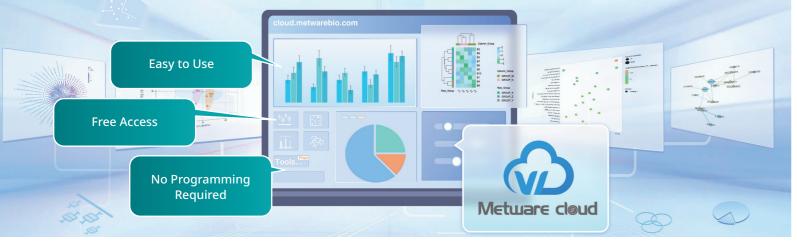


Holistic view of biological systems



Joint Analysis





KEGG Map

Converging Metabolic Pathway

Analyze Omics Data With Ease

Cloud Tools

Cloud Process

Customize analysis parameters

Get started for FREE! https://cloud.metwarebio.com/

Sample Type	Sample	DIA / DDA Quantitative Proteomics		Phosphoproteomics	
Sumple Type	Sample	Recommended	Minimum	Recommended	Minimum
Animal Tissue	Normal tissues (heart, liver, spleen, lungs	50 mg	5 mg	5 mg	30 mg
	intestines, kidneys, etc.)	200 mg	100 mg	1 g	500 mg
	Brain tissue	50 mg	5 mg	100 mg	50 mg
	Bone	1 g	200 mg	1 g	500 mg
	Hair	500 mg	200 mg	1 g	500 mg
	Skin	200 mg	100 mg	/	/
Sample Type Animal Tissue Liquid Samples	Serum/Plasma	20 µl	5 µl	/	/
	Serum/Plasma (low-abundant proteinsenrichment)	200 µl	100 µl	/	/
	Joint fluid, Lymph fluid, Cerebrospinal fluid	200 µl	100 µl	1 ml	500 µl
	Aqueous humor, Vitreous body	300 µl	200 µl	/	/
	Ascites, Follicular fluid	100 µl	50 µl	/	/
	Alveolar lavage fluid (BALF)	1 ml	500 µl	/	/
	Amniotic fluid	1 ml	500 µl	5 ml	2 ml
	Milk	20 µl	5 µl	/	/
	Urine	10 ml	5 ml	50 ml	20 ml
	Saliva (mammals)	1 ml	500 µl	7	/
	Fermentation broth, Bacterial solution	10 ml	5 ml	/	/
	Cellular supernatant	25 ml	10 ml	/	/
Cells	Primary Cells	3×10^6	1×10^6	2×10^7	1×10^7
	Transmissible cells	2×10^6	1×10^6	1×10^7	5×10^6
	Sperm, Platelets	2×10^7	1×10^7	5×10^7	2×10^7
Plant Tissue	Young tissue (young leaf, seedling, petal, etc.)	200 mg	100 mg	500 mg	200 mg
	Mature tissue (root, stem, fruit, pericarp, etc.)	1 g	500 mg	2 g	1.5 g
	Pollen	40 mg	15 mg	/	/
N di sus sus suis	Bacteria	200 mg	100 mg	/	/
Microorganisms	Fungi	300 mg	150 mg	1 g	500 mg
Protein	Protein	100 µg	30 µg	1000 µg	500 µg

Biological duplicates: A minimum of 3 replicates is required; 3-6 replicates for animal samples; 6-10 for clinical samples.

Bridging Proteomics and Metabolomics for Better Health

Metware Biotechnology Inc. (MetwareBio) is focused on developing and applying innovative multi-omics technologies to life science and health research. By leveraging state-of-the-art mass spectrometry technologies, unique detection workflow, and large curated in-house database, MetwareBio offers one-stop multi-omics solutions to academic research, clinical studies, and biotech/pharmaceutical developments.

MetwareBio technical achievements have been presented and published in over 700 publications, including Cell, Nature Genetics, PNAS, Nature Communications, National Science Review, and many other international peer-reviewed journals. Working with MetwareBio means you have all the metabolomics and multi-omics expertise supporting your research and development.

©2024-2025 MetwareBio, Inc. All rights reserved