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MWY-23-XXX Bile Acid Targeted Metabolomics Assay Final
Report

1 Abstract
Changes in physiological activity can change themetabolite profile of an organism. Targeted quantitative

detection technology allows sensitive qualitative annotation and highly accurate quantitative analysis of a set
of metabolites. MetwareBio has established a LC-MS/MS based analytical method that can quantify 65 bile
acid related metabolites.

For this project,24 samples were divided into 4 groups. A total of 44 metabolites were detected based
on UPLC-MS/MS system.

2 The experimental process
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) can detect and quantify compounds

with high polarity and poor thermal stability, and accurately quantify them. The overall process is as follows:

Fig 1: Flow chart of metabolomics analysis

Compounds to be detected:

Table 1: List of compounds in the panel

Number Compounds Index

1 taurolithocholic acid-3-sulfate TLCA-3S
2 Dehydrolithocholic acid DLCA
3 Isoallolithocholic acid IALCA
4 isolithocholic acid ILCA
5 Lithocholic acid LCA
6 5α-CHOLANIC ACID-3α-OL alloLCA
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Table 1: List of compounds in the panel

Number Compounds Index

7 Nor-Deoxycholic Acid 23-DCA
8 5-β-Cholanic Acid-3α-ol-6-one 6-ketoLCA
9 7-ketolithocholic acid 7-KLCA
10 12-ketolithocholic acid 12-KLCA
11 3-oxodeoxycholic acid 3-oxo-DCA
12 murideoxycholic acid MDCA
13 3β-Ursodeoxycholic Acid 3β-UDCA
14 β-Hyodeoxycholic Acid 3β-HDCA
15 Ursodeoxycholic acid UDCA
16 Hyodeoxycholic acid HDCA
17 Isochenodeoxycholic Acid isoCDCA
18 3β-deoxycholic acid 3β-DCA
19 Chenodeoxycholic acid CDCA
20 Deoxycholic acid DCA
21 Isodeoxycholic acid IDCA
22 norcholic acid NCA
23 Dehydrocholic acid DHCA
24 7,12-diketolithocholic acid 7,12-DKLCA
25 6,7-diketolithocholic acid 6,7-DKLCA
26 7-Ketodeoxycholic acid 7-KDCA
27 12-Oxochenodeoxycholic acid 12-oxo-CDCA
28 3-Oxocholic acid 3-oxo-CA
29 Ursocholic acid UCA
30 ω-muricholic acid ω-MCA
31 3β-Cholic Acid 3β-CA
32 α-muricholic acid α-MCA
33 β-muricholic acid β-MCA
34 hyocholic acid HCA
35 Cholic acid CA
36 Glycolithocholic acid GLCA
37 Glycoursodeoxycholic acid GUDCA
38 Glycochenodeoxycholic acid GCDCA
39 Glycodeoxycholic acid GDCA
40 lithocholic acid-3-sulfate LCA-3S
41 Glycodehydrocholic acid GDHCA
42 3β-Glycocholic Acid βGCA
43 Glycohyocholic acid GHCA
44 Glycocholic acid GCA
45 taurolithocholic acid TLCA
46 Tauroursodeoxycholic acid TUDCA
47 Taurochenodeoxycholic acid TCDCA
48 Taurodeoxycholic acid TDCA
49 Taurodehydrocholic acid TDHCA
50 glycolithocholic acid-3-sulfate GLCA-3S
51 Tauro-β-muricholic acid Tβ-MCA
52 Tauro-ω-muricholic Acid sodium salt Tω-MCA
53 Tauro-α-muricholicAcid sodium salt Tα-MCA
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Table 1: List of compounds in the panel

Number Compounds Index

54 Taurohyocholic acid THCA
55 Taurocholic acid TCA
56 Chenodeoxycholic acid-3-β-D-glucuronide CDCA-3Gln
57 Glycohyodeoxycholic Acid GHDCA
58 Taurohyodeoxycholic Acid (sodium salt) THDCA
59 cholic acid 7 sulfate CA-7S
60 Cholic Acid 3 Sulfate Sodium Salt CA-3S
61 chenodeoxycholic acid3-sulfate disodium salt CDCA-3S
62 Deoxycholic Acid 3-O-Sulfate Disodium Salt DCA-3-O-S
63 Glycoursodeoxycholic Acid 3 Sulfate Sodium GUDCA-3S
64 Glycochenodeoxycholic Acid 3 Sulfate Disodium

Salt
GCDCA-3S

65 Taurocholic Acid 3 sulfate sodium salt TCA-3S

Original file path: Final report/data/component.xlsx

2.1 Sample information

This project has 24 samples divided into 4 groups. Sample information is shown in the following table:

Table 2: Sample information table

Species Tissues MW_ID Sample_ID

_ _ A1 A1
_ _ A2 A2
_ _ A3 A3
_ _ A4 A4
_ _ A5 A5
_ _ A6 A6
_ _ B1 B1
_ _ B2 B2
_ _ B3 B3
_ _ B4 B4
_ _ B5 B5
_ _ B6 B6
_ _ C1 C1
_ _ C2 C2
_ _ C3 C3
_ _ C4 C4
_ _ C5 C5
_ _ C6 C6
_ _ D1 D1
_ _ D2 D2
_ _ D3 D3
_ _ D4 D4
_ _ D5 D5
_ _ D6 D6
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Original file path: Final report/0.data/sample_info.xlsx

2.2 Reagents and instruments

Table 3: Instrument information

Instrument Model Manufacturer

LC-MS/MS Triple Quad 6500+ SCIEX
Centrifuge 5424R Eppendorf
Electronic balance AS 60/220.R2 RADWAG
Ball mill instrument MM400 Retsch
Centrifugal concentrator CentriVap LABCONCO
Multitube vortex oscillator MIX-200 ShangHaiJingXin
Ultrasonic cleaning apparatus CD-F15 Olenyer

Table 4: Information of standards and reagents

Reagent level Manufacturer

Methanol HPLC Thermo fisher
Acetonitrile HPLC Thermo fisher
Acetic acid HPLC Thermo fisher
Ammonium acetate LC-MS Sigma-Aldrich
Chemical standard 99% Sigma-Aldrich/Zhenzhun.etc

2.3 Sample extraction process

1) Homogenize the sample by adding one steel bead to 20 mg of solid sample, 10 μL of 1 μg/mL internal
standard working solution, and 200 μL of 20% methanol in acetonitrile.

2) Shake the homogenized sample at 2500 rpm for 10 min, and then place it in a -20°C for 10 min.
3) Centrifuge at 4°C, 12,000 rpm for 10 min. Then collect the supernatant and concentrate it in a concen-

trator.
4) After the concentration is completed, reconstitute the sample with 100 μL of 50% methanol-water

solution, and set it aside for subsequent LC-MS/MS.

2.4 Chromatography-mass spectrometry acquisition conditions

Data acquisition was performed on Ultra Performance Liquid Chromatography (UPLC) (ExionLC™
AD, https://sciex.com/ ) and Tandem Mass Spectrometry (MS/MS) (QTRAP® 6500+, https://sciex.com/
).The primary liquid phase conditions consist the following:

1) Chromatography column: Waters ACQUITY UPLC HSS T3 C18 column (1.8 µm, 100 mm × 2.1 mm
i.d.)

2) Mobile phase: ultra-pure water (containing 0.01% acetic acid and 5 mmol/L ammonium acetate) for
phase A; acetonitrile (containing 0.01% acetic acid) for phase B.
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3) Flow rate: 0.35 mL/min; column temperature: 40∘C; injection volume: 3 μL.
4) Gradient elution program: A/B 95:5 (V/V) at 0 min, A/B 60:40 (V/V) at 0.5 min, 50:50 (V/V) at 4.5

min, 25:75 (V/V) at 7.5 min, 5:95 (V/V) at 10 min, 95:5 (V/V) at 12.0 min.
The primary mass spectrometry conditions consists the following(ESI-MS/MS Conditions):
Electrospray Ionization (ESI) temperature: 550 °C; mass spectrometry voltage: -4500 V; curtain gas

(CUR): 35 psi. In triple quadrupole mass spectrometry, ion pairs were scanned and detected based on opti-
mized declustering voltage (DP) and collision energy (CE).

2.5 Qualitative and quantitative principles of metabolites

Metabolites were quantified by multiple reaction monitoring (MRM) using triple quadrupole mass spec-
trometry. In MRM mode, the first quadrupole screened the precursor ions for the target substance and ex-
cluded ions of other molecular weights. After ionization induced by the impact chamber, the precursor ions
were fragmented, and a characteristic fragment ion was selected through the third quadrupole to exclude the
interference of non-target ions. After obtaining the metabolite spectrum data from different samples, the peak
area was calculated on the mass spectrum peaks of all substances and analyzed by standard curves.

Fig 2:
Schematic diagram of multiple reaction monitoring mode by mass spectrometry

3 Data evaluation

3.1 Data pre-processing

Analyst 1.6.3 was used to process mass spectrum data. The following figure shows the total ions current
(TIC) andMRMmetabolite detection multi-peak diagram (XIC) of the mixed QC samples. The X-axis shows
the Retention time (RT) from metabolite detection, and the Y-axis shows the ion flow intensity from ion
detection (intensity unit: CPS, count per second).
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Fig 3: Total ion current diagram of mixed phase mass spectrum analysis

Original file path: Final report/0.data/QC/*QC_MS_TIC.png

Fig 4: Extraction ion flow chromatogram

Original file path: Final report/0.data/QC/*MRM_detection_of_multimodal_maps*
The mass spectrometry data was analyzed using MultiQuant 3.0.3 software. The mass spectrum peaks

detected in different samples were scored and corrected based on retention time and peak shape of the standard.
The figure below shows the correction results of quantitative analysis of a substance randomly selected from
different samples.
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Fig 5: Scoring correction diagram for quantitative analysis of metabolites
Note: The figure shows the quantitative analysis integral correction results of ran-
domly selected metabolites in different samples. The x-axis is the retention time
(min) of metabolite detection, the y-axis is the ion flow intensity (CPS) of a cer-
tain metabolite ion detection, and the peak area represents the relative content of the
substance in the sample.

Original file path: Final report/0.data/QC/*Integral_correction.png

3.2 Standard Solution Preparation

Standards were prepared at 0.1 ng/mL, 0.2 ng/mL, 0.4 ng/ mL, 1 ng/ mL, 2 ng/ mL, 4 ng/ mL, 10 ng/ mL,
20 ng/ mL, 40 ng/ mL, 100 ng/ mL, 200 ng/ mL, 400 ng/ mL, and 1000 ng/mL. Mass spectral peak intensity
data were collected at each concentration to generate the calibration curve. The standard curves of each
substance were plotted with the concentration ratio of external standard to internal standard as the horizontal
coordinate and the peak area ratio of external standard to internal standard as the vertical coordinate. The
equation of calibration curve are shown in the following table:

Table 5: Equation of calibration curve

Index Class RT Equation

CDCA BAs 10.04 y = 0.00743 x + 0.00310
GUDCA-3S BAs 1.01 y = 0.02520 x - 7.97879e-4
DCA BAs 10.17 y = 0.00144 x + 4.10438e-4
3-oxo-DCA BAs 10.19 y = 0.04094 x + 0.00176
IALCA BAs 10.73 y = 0.01422 x + 0.00361
IDCA BAs 10.82 y = 0.00154 x - 3.10450e-5
ILCA BAs 10.82 y = 0.01764 x + 0.00792
LCA BAs 11.13 y = 0.01551 x + 0.04294
alloLCA BAs 11.21 y = 0.00996 x + 0.00518
DLCA BAs 11.22 y = 0.04407 x + 0.00103

Final report/0.data/equation.xlsx
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3.3 Quantification Results

Concentration of each compound was obtained by substituting integrated peak area ratio of all the de-
tected samples into the equation of calibration curve.

Concentration of solid sample (ng/g) = c*V/1000/m
c: the concentration obtained by substituting the sample peak area ratio into the equation of calibration

curve (ng/mL);
V: the volume of extraction solution (μL);
m: the mass of the sample (g).

The metabolite ID, concentration and corresponding metabolite names of some metabolites detected in
this experiment are shown in the following table:

Table 6: Statistical Table of metabolite quantity

Index A1 A2

12-KLCA 0.08169 0.08658
GCDCA-3S 0.04509 0.04554
GHDCA 0.01226 0.01347
βGCA 0.02943 0.03072
GUDCA-3S 0.07169 0.06080
HCA 0.02331 0.02742
HDCA 0.03462 0.03406
IALCA 0.07184 0.06126
IDCA 0.09259 0.10036
ILCA 0.00515 0.00518

Original file path: Final report/0.data/*level.xlsx

3.4 Sample Quality Control Analysis

3.4.1 Total Ion Chromatogram Analysis

Using the mixed solution as the QC sample, one QC sample was inserted every 10 detection samples
for analysis during the detection by the system. The stability of the device during the detection of the project
can be assessed by analyzing the overlapped total ion flow chromatograms (TICs) obtained from the mass
spectrometry detection and analysis of the same QC samples. The high stability of the testing device is a vital
safeguard for the reproducibility and reliability of the data.
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Fig 6: TIC overlap diagram detected by QC sample essence spectrum
Note: Superimposed spectrum from different QC samples. The results showed that
the spectrum of total ion flow were highly consistent indicating that the signal sta-
bility was good when the same sample was detected at different times by mass spec-
trometry.

Original file path: Final report/0.data/picture/*QC_MS_tic_overlap*

3.4.2 QC Sample correlation assessment

Pearson correlation analysis was performed on the QC samples. The closer the | r | to 1, the higher the
correlation between two samples. The correlation results can be seen in the figure below.

Fig 7: Correlation diagram between QC samples
Note: Diagonal squares represent QC samples name; Left diagonal box represent
scatter diagram of QC samples . Both x-axis and y-axis represent metabolite con-
tent. Each dot in the diagram represents a metabolite. Right diagonal box represents
correlation coefficients of QC samples .
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Original file path/1.Data_Assess/pcc/*mix*

3.4.3 CV value distribution of all samples

The Coefficient of Variation (CV) value is the ratio between the standard deviation of the original data
and the mean of the original data, which can reflect the degree of data dispersion. The Empirical Cumulative
Distribution Function (ECDF) can be used to analyze the frequency of CV of substances that is smaller than
the reference value. The higher the proportion of substances with low CV value in QC samples is, the more
stable the experimental data is. The proportion of substances with CV value less than 0.3 in QC samples was
higher than 80% , indicating that the experimental data were relatively stable. The proportion of substances
with CV value less than 0.2 in QC samples was higher than 80%, indicating that the experimental data were
very stable.

Fig 8: CV distribution of each group
Note: The X-axis represents the CV value, the Y-axis represents the proportion of
metabolites with CV value less than a corresponding reference value. Different col-
ors represent different sample groups. QC indicates quality control samples. The
two dash lines on X-axis correspond to 0.2 and 0.3; the two dash lines on Y-axis
correspond to 80% .

Original file path: Final report/1.Data_Assess/CV/*ECDF*

3.5 Principal Component Analysis (PCA)

3.5.1 Principles of principal component analysis

Multivariate statistical analysis can simplify complex high-dimensional data while preserving the orig-
inal information to the maximum extent by establishing a reliable mathematical model to summarize the
characteristics of the metabolic spectrum. Among them, Principal Component Analysis (PCA) is an unsu-
pervised pattern recognition method for statistical analysis of multidimensional data. Through orthogonal
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transformation, a group of variables that may be correlated are converted into a group of linear unrelated vari-
ables that are called principal components. This method is used to study how a few principal components may
reveal the internal structure of multiple variables, while keeping the original variable information (Eriksson et
al., 2006). The first principal component (PC1) represents the most variable features in the multidimensional
data matrix, PC2 represents the second most variable feature in the data, and so on. prcomp function of R
software (www.r-project.org/) was used with parameter scale=True indicating unit variance Scaling (UV) for
normalizing the data. See appendix for details of PCA calculation.

3.5.2 Principal component analysis of the sample population

Principal component analysis (PCA) was performed on all the samples (including QC samples) to ex-
amine the overall differences between each group and the variation between samples within a group. QC is
the Quality control sample mentioned above. PCA plot for the first two principal components is as follows:

Fig 9: PCA score
diagram of quality spectrum data of each group of samples and quality control sample
Note: PC1 represents the first principal component and PC2 represents the second
principal component. Percentage represents the interpretation rate of the principal
component to the data set. Each dot in the figure represents a sample, and samples
in the same group are indicated in the same color.

Original file path : Final report /1.Data_Assess/*all_pca*

3.5.3 Principal component univariate statistical process control

We plotted the sample control diagram based on principle component analysis results. Each point in the
control chart represents a sample, and the X-axis is the injection order of the sample. Due to changes in the
instrument, the points on the chart may fluctuate up and down. Generally, PC1 of the QC sample should be
within 3 standard deviations (SD) from the normal range.
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Fig 10: PC1 control diagram of population sample
Note: In the figure, the X-axis is the injection order of the sample, and the Y-axis
reflects the PC1 value. The yellow and red lines define plus orminus 2 and 3 standard
deviations respectively. The green dots represent QC samples and the black dots
represent test samples.

Original file path: Final report/1.Data_Assess/pca/*PC1_QCC*

3.6 Hierarchical Cluster Analysis

3.6.1 Principles of cluster analysis

Hierarchical Cluster Analysis (HCA) is a type of multivariate statistical analysis method. The samples
are classified according to their features such that highest homogeneity is achieved between sample from the
same group and highest heterogeneity is achieved between samples from different groups. In this report, the
compound quantification data was normalized (Unit Variance Scaling, UV Scaling) and heatmaps were drawn
by R software Pheatmap package. Hierarchical Cluster Analysis (HCA) was used to cluster the samples.
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Fig 11: Sample clustering diagram
Note: X-axis indicates the sample name and the Y-axis are the metabolites. Group in-
dicates sample groups. Z-Score indicates the relative quantification of each metabo-
lite with red representing higher content and green representing lower content. Clus-
ter analysis was performed on both metabolites (vertical cluster tree) and samples
(horizontal cluster tree).“all_heatmap_class”: Heat map based on metabolite clas-
sification;“all_heatmap_no_cluster”: Showing only heatmap.

Original file path: Final report /1.Data_Assess/*all_heatmap*

4 Analysis results

4.1 Principal component analysis of sample groups

4.1.1 Principal component analysis between sample groups

Principal component analysis was first performed on each pair of sample groups to examine the degree
of variation between different groups and between samples within the group.
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Fig 12: Principal component analysis of different groups
Note: Each group has a PCA plot, PC1 represents the first principal component,
PC2 represents the second principal component, and the percentages on the axis
represents the interpretation rate of the principal component to the data set. Each dot
in the figure represents a sample, samples in the same Group are represented by the
same color, and Group is a grouping.

The three-dimensional PCA result is shown in the figure below:

Fig 13: Three-dimensional PCA plot of different groups
Note: PC1 represents the first principal component, PC2 represents the second prin-
cipal component, and PC3 represents the third principal component.

The explainable variation of the first five principal components is shown in the figure.
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Fig 14: The explainable variation of the first five principal components
Note: The X-axis represents each principal component, the Y-axis represents the
explainable variation, the left figure represents the cumulative explainable variation,
and the right figure represents the explainable variation of each principal component

Principal component analysis of different groups:Original file path: Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/pca/group-ID*_vs_group-ID*_pca.*;

Three-dimensional PCAplot of different groups:Original file path: Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/pca/group-ID*_vs_group-ID*_pca3D.*

The explainable variation of the first five principal components:Original file path: Final re-
port/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/pca/group-ID*_vs_group-ID*_pcaVar.*

4.2 Discriminant Analysis by Orthogonal Partial Least Squares (OPLS-DA)

PCA analysis is often insensitive to variables with small correlation. In contrast, partial least squares-
discriminant analysis (PLS-DA) is a multivariate statistical analysis method with supervised pattern recog-
nition, in which components in independent variable X and dependent variable Y are extracted to calculate
the correlation between components. Compared with PCA, PLS-DA can maximize the difference between
groups and facilitate the search for differential compounds. Orthogonal partial least squares discriminant anal-
ysis (OPLS-DA) combines orthogonal signal correction (OSC) and PLS-DA method, which can decompose
the x-matrix information into two types (1. information related to Y and 2. irrelevant information) and filter
the differential variables by removing the irrelevant differences.

The OPLSR.Anal function in the R package MetaboAnalystR was used for this analysis. The following
table shows a partial result from the OPLS-DA model:
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Table 7: Partial results of OPLS-DA

Index Compounds Type

12-KLCA 12-ketolithocholic acid insig
GCDCA-3S Glycochenodeoxycholic Acid 3 Sulfate Disodium

Salt
insig

GHDCA Glycohyodeoxycholic Acid down
βGCA 3β-Glycocholic Acid insig
GUDCA-3S Glycoursodeoxycholic Acid 3 Sulfate Sodium insig
HCA hyocholic acid down
HDCA Hyodeoxycholic acid insig
IALCA Isoallolithocholic acid insig
IDCA Isodeoxycholic acid up
ILCA isolithocholic acid down

Original file path: The calculation results of all metabolites of OPLS-DA were compared in groups:
/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/group-ID*_vs_group-ID*_info.xlsx.

4.2.1 Principles of OPLS-DA model

During OPLS-DA modeling, the X matrix information is decomposed into information related to Y
and information unrelated to Y. Among them, the variable information related to Y is the predicted principal
component, and the information unrelated to Y is the orthogonal principal component (Thevenot et al., 2015).

Fig 15: OPLS-DA score diagram
Note: The X-axis represents the predicted principal component, and the difference
between groups can be seen in the horizontal direction. The Y-axis represents the or-
thogonal principal component, and the vertical direction shows the difference within
the group. Percentage indicates the degree to which the component explains the
data set. Each dot in the figure represents a sample, samples in the same Group are
represented by the same color, and Group indicates sample groups.

Original file path:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/opls/group-
ID*_vs_group-ID*_opls_score.*.
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4.2.2 OPLS-DA model validation

The prediction parameters of the evaluation model are R2X, R2Y and Q2, where R2X and R2Y represent
the explanatory rate of the model to X and Y matrix respectively, and Q2 represents the predictability of the
model. The closer these three indicators are to 1, the more stable and reliable the model is. Q2 > 0.5 can be
considered as an effective model, and Q2 > 0.9 can be considered as an excellent model. The following figure
shows the OPLS-DA validation plot with the horizontal coY-axis indicating the model R2Y, Q2 values, and
the vertical coY-axis is the frequency of the model classification effect. The model performs bootstrapping
200 times and if Q2’s P = 0.02, it indicates that the prediction ability of four random grouping models is
better than that of the OPLS-DA model in the Permutation detection. If R2Y’s P = 0.545, it indicated that
there were 109 random grouping models in the Permutation detection, whose explanation rate of Y matrix
was better than that of the OPLS-DA model. In general, P < 0.05 is the best model.

Fig 16: OPLS-DA verification diagram

Original file path:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/opls/group-
ID*_vs_group-ID*_opls_permutation.*.

4.2.3 OPLS-DA S-plot

The figure below shows the OPLS-DA S-plot. The horizontal axis is the covariance between the princi-
pal components and metabolites, the vertical axis indicates the correlation coefficient between the principal
components and the metabolites. The closer the points are to the top right corner or bottom left corner, the
more significant the difference in metabolite abundance. Red dots indicate metabolites with VIP value > 1
and green dots indicate metabolites with VIP value <= 1.
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Fig 17: OPLS-DA S-plot

Original file path:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/opls/group-
ID*_vs_group-ID*_opls_splot.*.

4.3 Dynamic distribution of metabolite content differences

To show the overall compound abundance distribution in the samples, compounds were sorted and plot-
ted based on fold-change values from small to large. The distribution of the ranked compounds is shown
below with the top 10 up-regulated and top 10 down-regulated compound labelled.

Fig 18: Dynamic distribution of metabolite content differences
Note: In the figure, the X-axis represents the rank number ofmetabolites based on FC
value. The Y-axis represents the log_2FC value. Each point represents a metabolite.
The green points represent the top 10 down-regulated metabolites and the red points
represent the top 10 up regulated metabolites.

20



Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/distribution/group-
ID*_vs_group-ID*fc_distribution*

4.4 Differential metabolite screening

It is often necessary to combine univariate statistical analysis and multivariate statistical analysis for
large high dimensional datasets such as metabolomics datasets to accurately identify differential metabolites.
Univariate statistical analysis methods include parametric test and nonparametric test. Multivariate statistical
analysis methods include principal component analysis and partial least square discriminant analysis. Based
on the results of OPLS-DA (biological repetition ≥ 2), multivariate analysis of Variable Importance in Projec-
tion (VIP) from OPLS-DA modeling was used to preliminarily select differential metabolites from different
samples. The fold-change and statistical significance (p-value) from univariate analysis can be used in con-
junction to further identify differential metabolites. If biological replicates were < 3, differential metabolites
are screened based on Fold Change value. If there were ≥ 3 biological replicates, VIP and P-values were used
in combination to screen for differential metabolites. The detailed screening criteria is as follows:

For two sets of comparisons:

1.Metabolites with VIP > 1 were selected. VIP value represents the effect of the differences between
groups for a particular metabolite in various models and sample groups. It is generally considered that
the metabolites with VIP > 1 have significant difference.

2.Metabolites with Fold Change ≥ 2 and Fold Change ≤ 0.5 were considered as significant and se-
lected.

A partial result from the screening criteria is seen below:

Table 8: Screening results of differential metabolites

Index Compounds Type

GHDCA Glycohyodeoxycholic Acid down
HCA hyocholic acid down
IDCA Isodeoxycholic acid up
ILCA isolithocholic acid down
LCA Lithocholic acid down
LCA-3S lithocholic acid-3-sulfate down
MDCA murideoxycholic acid down
UCA Ursocholic acid down
alloLCA 5α-CHOLANIC ACID-3α-OL up
isoCDCA Isochenodeoxycholic Acid up

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/group-ID*_vs_group-
ID*filter.xlsx.
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4.4.1 Bar chart of differential metabolites

The following figure shows the result of top differentially expressed metabolites in each comparison
with fold-change value shown as log2 values .

Fig 19: Bar chart of differential metabolites
Note: X-axis refers to log_2FC values of top differential metabolites,the Y-axis
refers to metabolites. Red bars represent up-regulated differential metabolites and
green bars represent down-regulated differential metabolites.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/TopFcMetabolites/group-
ID*_vs_group-ID*_TopFcMetabolites.*

4.4.2 Differential metabolite radar map

The top 10 differential metabolites based on Fold-change were selected and plotted on the radar plot.
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Fig 20: Differential metabolite radar map
Note: The grid lines correspond to the log_2FC. The green colored area is formed
from the lines connecting the dots

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/radarchart/*radarchart**

4.4.3 VIP values of differential metabolites

The top 50 metabolites with the largest VIP value in the OPLS-DA model were selected and plotted.

Fig 21: VIP values of differential metabolites
The top 50 metabolites with the largest VIP value in the OPLS-DA model were se-
lected and plotted.

/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/vipscore/group-ID*_vs_group-
ID*_vipScore.*.
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4.4.4 Volcanic plot of differential metabolites

Volcano Plot is mainly used to show the relative differences and the statistical significance of compounds
between two groups. We provided the volcano plot of differential compounds using different selection criteria
for your consideration. The details of different selection criteria are described in the README document
under the volcano plot directory. In addition, the attached results also provided an interactive web version of
the volcano plot where you can examine the details of each compound.

Fig 22: Volcanic plot of differential metabolites
Note: Each point in the volcano plot represents a metabolite with green dots repre-
sents the down-regulated differential metabolite, red dots represents the up-regulated
differential metabolite, and gray dots represents the detected metabolite but show no
insignificant difference. The X-axis represents the (log_2FC) value of metabolite be-
tween two groups. The further away from 0 on theX-axis, the greater the fold-change
between two groups. If the metabolite were screened using VIP + FC + P-value, the
Y-axis will represent the level of significant difference (-log_10p-value).The size of
each dot represents the VIP value

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/vol/*vol_*

4.4.5 Heatmap of differential metabolites

In order to observe the fold-change of differential compounds more intuitively, we normalized the abun-
dances using unit variance scaling (UV scaling, see appendix for details of calculation formula) and plotted
on a heatmap using pheatmap in R.
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Fig 23: Heatmap of differential metabolites
Note: The X-axis shows the name of the samples and the Y-axis shows the differen-
tial metabolites. Different colors in the heatmap represent the values obtained after
normalization and reflect the level of relative quantification. The darker the red, the
higher the quantification. In contrast, the darker the green, the lower the quantifi-
cation. The colored bar on top depicts sample groups. If hierarchical clustering is
performed, the clustering tree will be shown on the left. If classification was per-
formed on the metabolites, a colored bar will be shown on the left to depict Level 1
classifications.

Heatmap of differentialmetabolites:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-
ID*/heatmap/group-ID*_vs_group-ID*_heatmap.*;

4.4.6 Z-value map of differential metabolites

Z-score plot is to normalize the differential metabolites in different samples by calculating the Z-value.
The a-axis represents the z-value, the y-axis represents the differential metabolites, and the dots in different
colors represent samples of different groups. The distribution of each differential metabolite among different
groups can be seen intuitively. The formula is: z = (x - µ) / σ; Where x is a specific score, µ is the mean, and
σ is the standard deviation.
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Fig 24: Z-value map of differential metabolites
Note: the X-axis is the value of substance content after normalized treatment, the Y-
axis is the number ofmetabolites, and the points in different colors represent different
groups of samples.

/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/zScore/group-ID*_vs_group-ID*_zScore.*.

4.4.7 Correlation analysis of differential metabolites

Compounds may act synergistically or in mutually exclusive relationships amongst each other. Correla-
tion analysis can help measure the compound proximities of significantly different compounds. This analysis
will help further understand the mutual regulatory relationship between compounds in the biological process.
Pearson correlation was used to perform correlation analysis on the differential compounds identified based
on the screening criteria described previously.
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Fig 25: Heat map of correlation of different metabolites
Note: The ID of the metabolites are shown on both horizontal and vertical axis.
The colors represent the Pearson correlation coefficient (r) with the scale seen on
the right (The darker the red, the stronger the positive correlation; the darker the
green the stronger the negative correlation). If there are more than 50 differential
metabolites, the figure will only show the top 50 metabolites based on VIP values.

Differential metabolite correlation heat map: Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/cpdCorr/group-ID*_vs_group-ID*_raw_cpdCorr_*.*;

Fig 26: Chord diagram of differential metabolites
Note: The outermost layer shows the metabolite ID. The second layer shows
log_2FC value,The larger the dot,the larger the log_2FC value; The color for the
first and second layer represent Level 1 metabolite classification. The chords in the
inner most layer reflect the Pearson correlation between the connected metabolites.
Red chords represent positive correlation, and the blue chords represent negative
correlation. Only metabolites with |r| ≥ 0.8 and p < 0.05 are plotted.
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Final report//2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/cpdCorr/group-ID*_vs_group-
ID*_cpdCorrCir_*.*;

Fig 27: Correlation network diagram of differential metabolites
Note: The points in the figure represent the various differential metabolites, and
the size of the points is related to the Degree of connection. The larger the point,
the greater the Degree of connection, i.e. the more points (neighbors) connected to
it. Red lines represent positive correlations and blue lines represent negative correla-
tions. Line thickness represents the absolute value of Pearson correlation coefficient.
The larger the |r|, the thicker the line. Only metabolites with |r| ≥ 0.8 and p < 0.05
are plotted.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/cpdCorr/*network*

4.4.8 Violin plot of differential metabolites

Violin plot is used to display data distribution and its probability density. The box in themiddle represents
the interquartile range, and the middle box represents the 95% confidence interval. The black horizontal line
is the median, and the outer shape represents the distribution density of the data. The following figure shows
the result of top 50 differentially compounds with the largest Log2FC value.
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Fig 28: Violin plot of differential metabolites
Note: X-axis refers to sample,the Y-axis refers to content.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/fullViolin/group-ID*_vs_group-
ID*_fullViolin_Raw.*;

4.4.9 K-means analysis

K-means analysis is a method to examine the trend of relative quantification changes of a metabolite
in different sample groups. K-means is performed based on the Z-score normalized relative quantification
value.

Fig 29: K-Means diagram of differential metabolites
Note: The X-axis represents the sample names and the Y-axis represents the normal-
ized relative quantification.“Sub Class”represents a group of metabolites with the
same trend and the number represent the number of metabolites in this cluster.

Figure of K-means clustering:Final report/2.Basic_analysis/kmeans/kmeans_cluster.*

29



4.4.10 Differential metabolite statistics

The number of different metabolites in each group is shown in the table below:

Table 9: Statistical table of differential metabolites

group name All sig diff down regulated up regulated

A_vs_B 33 23 10
A_vs_C 35 21 14

Statistical table of differentialmetabolites:Final report/2.Basic_analysis/Difference_analysis/sigMetabolitesCount.xlsx;

4.4.11 Venn diagram of differences among groups

Venn diagram was used to show the relationship between different metabolites in each group. Show
petals in 5 groups or more. The results are shown below:

Fig 30: Venn diagram of differences among groups
Note: Each circle in the figure represents a comparison group, the number of circles
and overlapped parts represents the number of common differential metabolites be-
tween comparison groups, and the number of non-overlapped parts represents the
number of unique differential metabolites in comparison groups.

/2.Basic_analysis/Venn

4.5 Functional annotation and enrichment analysis of differential metabolites in
KEGG database

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database that integrates compounds and genes
into metabolic pathways. The KEGG database enabled researchers to study genes with their expression in-
formation and compounds with their abundances as a complete network.
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4.5.1 Functional annotation of differential metabolites

Metabolites are annotated using the KEGG database, and only metabolic pathways containing differen-
tial metabolites are shown. Detailed results are found in the attached results. A portion of the results is shown
below:

Fig 31: KEGG pathway of metabolites
Note: Red circles indicate that the metabolite content was significantly up-regulated
in the experimental group; the blue circles indicate that the metabolite content was
detected but did not change significantly; Green circles indicate that the metabolite
content was significantly down-regulated in the experimental group. The orange
circles indicate a mixture of both up-regulated and down-regulated metabolites.This
allows searching for metabolites that may contribute to the phenotypic differences.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/Graph/ko*.

Statistical analysis of KEGG database annotation of screened metabolites with significant differences.
Some of the results are as follows:

Table 10: KEGG annotations for differential metabolites

Index Compounds Type cpd_ID

GHDCA Glycohyodeoxycholic Acid down -
HCA hyocholic acid down C17649
IDCA Isodeoxycholic acid up C17661
ILCA isolithocholic acid down C17658
LCA Lithocholic acid down C03990
LCA-3S lithocholic acid-3-sulfate down -
MDCA murideoxycholic acid down C15515
UCA Ursocholic acid down C17644
alloLCA 5α-CHOLANIC ACID-3α-OL up -
isoCDCA Isochenodeoxycholic Acid up C17660
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Table 11: Enrichment Statistics of KEGG annotations for differential metabolites

ko_ID Sig_compound compound Sig_compound_all compound_all

ko04976 3 9 3 9
ko00120 2 6 3 9
ko01100 1 4 3 9
ko04979 1 4 3 9

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_filter_kegg.xlsx.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_KEGG.xlsx.

4.5.2 KEGG classification of differential metabolites

The significant differential metabolites were classified based on pathway annotation . The results are as
follows:

Fig 32: KEGG classification of differential metabolites
Note: the Y-axis shows the name of the KEGG pathway. The number of metabolites
and the proportion of the total metabolites are shown next to the bar plot.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID_KEGG_barplot.*.

4.5.3 Hierarchical Cluster Analysis of differential metabolites in KEGG signaling pathway

We clustered the metabolites in each pathway base on their relative quantification in order to exam-
ine the pattern of metabolite changes in different sample groups. Only pathways with at least 5 differential
metabolites were analyzed.
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Fig 33: Clustering heat map of differential metabolites in KEGG pathway
Note: The X-axis shows the name of the samples and the Y-axis shows the differ-
ential metabolites. Different colors in the heatmap represent the values obtained
after normalization and reflects the level of relative quantification. The darker the
red, the higher the quantification. In contrast, the darker the green, the lower the
quantification. The colored bar on top depicts sample groups. If hierarchical clus-
tering is performed, the clustering tree will be shown on the left. If classification
was performed on the metabolites, a colored bar will be shown on the left to depict
classifications.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID_KEGG_heatmap.*.

4.5.4 KEGG enrichment analysis of differential metabolites

KEGG pathway enrichment analysis was conducted based on the annotation results. We calculated the
Rich Factor for each pathway, which is the ratio of the number of differenetial metabolites in the corresponding
pathway to the total number of metabolites annotated in the same pathway. The greater the Rich Factor, the
greater the degree of enrichment. P-value is the calculated using hypergeometric test as shown below:

𝑃 = 1 −
𝑚−1
∑
𝑖=0

(𝑀𝑖 )(𝑁−𝑀𝑛−𝑖 )
(𝑁𝑛)

N represents the total number metabolites with KEGG annotation, n represents the number of differential
metabolites in N, M represents the number of metabolites in a KEGG pathway in N, and m represents the
number of differential metabolites in a KEGG pathway in M. The closer the p-value to 0, the more significant
the enrichment. The size of the dots in the figure represents the number of significantly different metabolites
enriched in the corresponding pathway. The results are shown below:
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Fig 34: KEGG enrichment diagram of differential metabolites
Note: The X-axis represents the Rich Factor and the Y-axis represents the pathway.
The color of points reflects the p-value. The darker the red, the more significant
the enrichment. The size of the dot represents the number of enriched differential
metabolites.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_KEGG_Enrichment.*.

4.5.5 Overall changes in KEGG metabolic pathway

Differential Abundance Score (DA Score) is a score based on changes in metabolites in a pathway. DA
Score can capture the overall changes of all Differential metabolites in a pathway with the following formulat:

DA score=(up regulated metabolites in a pathway-down regulated metabolites in a pathway)/(Total num-
ber of metabolites annotation in a pathway)
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Fig 35: Difference abundance score
Note: The Y-axis represents the name of differential pathway, and the X-axis rep-
resents DA Score. DA Score reflects the overall change of all metabolites in the
metabolic pathway. A Score of 1 indicates that the expression trend of all identi-
fied metabolites in this pathway is up-regulated, and -1 indicates that the expression
trend of all identified metabolites in this pathway is down-regulated. The length of
the line represent the absolute value of DA-score while the size of the dot at the end
of the line represent the number of differential metabolites. A dot on the left of the
line represent the pathway is up-regulated; a dot on the right of the line represents
the pathway is down-regulated. The color of the line and dot represent the p-value.
The darker the red, the smaller the p-value and the darker the purple, the larger the
p-value.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/*DA_score*

4.6 Functional annotation and enrichment analysis in HMDB database

4.6.1 Functional annotation and enrichment analysis of differential metabolites in HMDB database

HMDB is a widely used database that has collected more than 40,000 endogenous metabolites and more
than 5000 related protein or gene information. Records in this database links to external databases (such as
KEGG,Metlin, Biocyc, etc.) and also contains mass spectra and NMR spectra data. The HMDB sub-database
SMPDB also provides a detailed overview of humanmetabolism, metabolic disease pathways, and metabolite
signaling and drug activity pathways.

Pathway enrichment analysis was performed only with the Primary Pathways. The results are as follows:
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Table 12: SMPDB pathway enrichment for differential metabolites

primary_SMPDB_ID p_value

”SMP0000035” 1
”SMP0000314” 1
”SMP0000318” 1
”SMP0000317” 1
”SMP0000316” 1
”SMP0000315” 1
”SMP0000720” 1

The differential metabolites from the top 20 HMDB Primary Pathways pathways with P-value were
annotated and visualized using the HMDB database. Detailed information about each group can be found in
the corresponding data files. Partial results are shown below:

Fig 36: HMDB pathway map of differential metabolites
Note: Red indicated that the metabolite content was significantly up-regulated in
the experimental group, Gray indicated that the metabolite content was detected but
did not change significantly, Green indicated that the metabolite content was signif-
icantly down-regulated in the experimental group. and blue represents metabolites
in the pathway that were not detected in this experiment.The causes of phenotypic
differences among study subjects were sought through metabolic pathways.

The top 20 HMDB Primary Pathways based on P-value ranking were chosen for Rich Factor plot. The
Rich Factor is the ratio of the number of differential metabolites in the corresponding pathways to the total
number of metabolites annotated to the same pathway. The higher the value is, the greater the degree of
enrichment. The closer P-value is to 0, the more significant the enrichment is. The size of the dots in the
figure represents the number of differential metabolites enriched into the corresponding pathway. The results
are shown below:
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Fig 37: HMDB enrichment diagram of differential metabolites
Note: The X-axis represents the Rich Factor and the Y-axis represents the pathway.
The color of points reflects the p-value. The darker the red, the more significant
the enrichment. The size of the dot represents the number of enriched differential
metabolites.

Statistical table of differentialmetabolite enrichment inHMDBdatabase:Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/enrichment/group-ID*_vs_group-ID*_SMPDB_primary.xlsx;

HMDB pathway map of metabolites:Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/enrichment/SMP_primary_pathway;

HMDBenrichment diagram of differentialmetabolites:Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/enrichment/group-ID*_vs_group-ID*SMPDB_primary_Enrichment.*.

4.7 Associated diseases

We annotated disease information according to the HMDB database for differential metabolites. Some
of the results are shown below :

Table 13: Table of association between differential metabolites and diseases

CompoundName HmdbDiseases

Glycohyodeoxycholic Acid -
hyocholic acid Colorectal cancer | Primary biliary cirrhosis
Isodeoxycholic acid -
isolithocholic acid -
Lithocholic acid Cystic fibrosis | Biliary atresia | Colorectal cancer | Primary biliary cirrhosis
lithocholic acid-3-sulfate -
murideoxycholic acid -
Ursocholic acid Primary biliary cirrhosis
5α-CHOLANIC ACID-3α-OL Cystic fibrosis | Biliary atresia | Colorectal cancer | Primary biliary cirrhosis
Isochenodeoxycholic Acid -
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Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_sigDiseasesTable.xlsx.
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6 Appendix

6.1 Analytical methods

1.PCA

Unsupervised PCA (principal component analysis) was performed by statistics function prcomp within
R (www.r-project.org). The data was unit variance scaled before unsupervised PCA.

2.Hierarchical Cluster Analysis and Pearson Correlation Coefficients
The HCA (hierarchical cluster analysis) results of samples and metabolites were presented as heatmaps

with dendrograms, while pearson correlation coefficients (PCC) between samples were caculated by the cor
function in R and presented as only heatmaps. Both HCA and PCC were carried out by R package pheatmap.
For HCA, normalized signal intensities of metabolites (unit variance scaling) are visualized as a color spec-
trum.

3.Differential metabolites selected
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Significantly regulated metabolites between groups were determined by VIP and absolute Log2FC (fold
change). VIP values were extracted from OPLS-DA result, which also contain score plots and permutation
plots, was generated using R package MetaboAnalystR. The data was mean centering before OPLS-DA. In
order to avoid overfitting, a permutation test (200 permutations) was performed.

4.KEGG annotation and enrichment analysis
Identified metabolites were annotated using KEGG compound database (http://www.kegg.jp/kegg/

compound/), annotated metabolites were then mapped to KEGG Pathway database (http://www.kegg.jp/
kegg/pathway.html). Pathways with significantly regulated metabolites mapped to were then fed into MSEA
(metabolite sets enrichment analysis), their significance was determined by hypergeometric test’s P-Values.

6.2 List of software and versions

Table 14: Software used

Analysis Software Version

PCA R (base package) 3.5.1
Pearson Correlation R (base package; Hmisc) 3.5.1; 4.4.0
Correlation plot R (corrplot) 0.84
Heatmap R (heatmaply; ComplexHeatmap) 1.2.1; 2.7.1.1009
OPLS-DA R (MetaboAnalystR) 1.0.1
Radar plot R (fmsb) 0.7.0
Chord diagram R (igraph; ggraph) 1.2.4.2; 2.0.2
Network diagram R (igraph) 1.2.4.2
Regulatory network diagram R (FELLA) 1.10.0

Data processing methods were mainly adopted in the analysis process in two ways:

(1) unit variance scaling (UV)
Unit variance Scaling (UV) is also called Z-Score standardization, i.e., auto scaling. This method stan-

dardizes data according to mean and standard deviation of original data. The processed data conform to the
standard normal distribution, that is, the mean value is 0 and the standard deviation is 1.

Calculation method: Divide the original data center by standard deviation.
The formula is as follows:

𝑥′ = 𝑥 − 𝜇
𝜎

Where µ is the mean value and σ is the standard deviation.
(2) Centralization/zero-mean-centered (Ctr)

Calculation method: subtract the mean of the variables from the original data.
The formula is as follows:
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𝑥′ = 𝑥 − 𝜇
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