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Quantitative Lipidomics Report for XXX

1 Abstract
Lipidomics is a branch of metabolomics that focuses on detecting and quantifying lipids. Lipid

metabolism is a major biological process and is topic of intense research, involving research in energy
transport, intercellular signaling and regulation, and other essential processes in growth and development.
About 70% of the compounds in plasma are lipids. For this project:

(1) 36 samples were selected and divided into 6 groups for lipidomics and 803 lipids were detected. We
performed qualitative and quantitative analysis using UPLC-MS/MS detection platform and in-house
compound database. Differential analysis was performed using MetwareBio’s bioinformatics pipeline.

(2) Results of differential lipid analysis:

Table 1: Statistical table of differential lipids

group name All sig diff down regulated up regulated

A_vs_B 447 242 205

Original file path/2.Basic_analysis/Difference_analysis/sigMetabolitesCount.xlsx;

2 The experimental process
Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is often used for

accurate qualitative and quantitative compound analysis. The main purpose of lipidomics is to detect and
identify lipids with important biological significance that show statistically significant differences between
biological samples. The overall lipidomics process at MetareBio can be seen as follows.

Fig 1: Flow chart of metabolomics analysis
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2.1 Sample information

The samples in this project are grouped as follows:

Table 2: Sample information table

Species Tissues MW_ID Sample_ID

- - A2 A2
- - A3 A3
- - A4 A4
- - A1 A1
- - A6 A6
- - A7 A7
- - B2 B2
- - B3 B3
- - B4 B4
- - B1 B1
- - B6 B6
- - B7 B7
- - C1 C1
- - C2 C2
- - C5 C5
- - C4 C4
- - C3 C3
- - C7 C7
- - D1 D1
- - D2 D2
- - D5 D5
- - D4 D4
- - D3 D3
- - D7 D7
- - E1 E1
- - E2 E2
- - E5 E5
- - E4 E4
- - E3 E3
- - E7 E7
- - F1 F1
- - F2 F2
- - F5 F5
- - F4 F4
- - F3 F3
- - F7 F7

Original file path/0.data/sample_info.xlsx
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2.2 Reagents and instruments

Table 3: Instrument information

Instruments Type brand

LC-MS/MS QTRAP 6500+ SCIEX
Centrifuge 5424R Eppendorf
Electronic Balance AS 60/220.R2 RADWAG
Ball Mill MM400 Retsch
Centrifugal Concentrator CentriVap LABCONCO
Vortex Mixer MI0101002 Four E’s
Ultrasonic Cleaner CD-F15 Olenyer

Table 4: Information of standards and reagents

Reagents Level Brand

Methanol HPLC Grade Thermo Fisher
Acetonitrile HPLC Grade Thermo Fisher
Formic acid HPLC Grade Sigma
Ammonium formate Mass Spectrometry pure Sigma
Isopropyl alcohol HPLC Grade Fisher
Methyl tert-butyl ether HPLC Grade Fisher
Standard ＞ 99% Avanti/zzstandard

2.3 Sample extraction process

Take out the sample from the -80∘C refrigerator and thaw it on ice. Weigh 20 mg of sample, then add
1mL of the extraction solvent (MTBE: MeOH =3:1, v/v) containing internal standard mixture. After whirling
the mixture for 15 min, 200 μL of ultrapure water was added. Vortex for 1 min and centrifuge at 12,000 rpm
for 10 min. 200 μL of the upper organic layer was collected and evaporated using a vacuum concentrator.
The dry extract was dissolved in 200 μL reconstituted solution (ACN: IPA=1:1, v/v) to LC-MS/MS analysis.

2.4 Chromatography-mass spectrometry acquisition conditions

The data acquisition instruments consisted of Ultra Performance Liquid Chromatography (UPLC) (Nex-
era LC-40, https://www.shimadzu.com) and tandem mass spectrometry (MS/MS) (Triple Quad 6500+,https:
//sciex.com/ ).

Liquid phase conditions:
1) Chromatographic column: Thermo Accucore™C30 (2.6 μm, 2.1 mm×100 mm i.d.);

2) Mobile phase: A phase was acetonitrile /water (60/40, V/V) (0.1% formic acid added, 10 mmol/L
ammonium formate); B phase was acetonitrile / Isopropyl alcohol (10/90, V/V) (0.1% formic acid
added, 10 mmol/L ammonium formate);
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3) Gradient program: 80:20(V/V) at 0 min, 70:30(V/V) at 2 min, 40:60(V/V) at 4 min , 15:85(V/V) at 9
min, 10:90(V/V) at 14 min, 5:95(V/V) at 15.5 min, 5:95(V/V) at 17.3 min, 80:20(V/V) at 17.5 min,
80:20(V/V) at 20 min;

4) Flow rate: 0.35 ml/min; Column temperature: 45∘C; Injection volume: 2 μL.

Mass spectrometry conditions:
LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear ion trap mass spec-

trometer (QTRAP), QTRAP® 6500+ LC-MS/MS System, equipped with an ESI Turbo Ion-Spray interface,
operating in positive and negative ion mode and controlled by Analyst 1.6.3 software (Sciex). The ESI source
operation parameters were as follows: ion source, turbo spray; source temperature 500 ∘C; ion spray voltage
(IS) 5500 V(Positive),-4500 V(Neagtive); Ion source gas 1 (GS1), gas 2 (GS2), curtain gas (CUR) were set
at 45, 55, and 35 psi, respectively. Instrument tuning and mass calibration were performed with 10 and 100
μmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively. QQQ scans were acquired as
MRM experiments with collision gas (nitrogen) set to 5 psi. DP and CE for individual MRM transitions was
done with further DP and CE optimization. A specific set of MRM transitions were monitored for each period
according to the lipids eluted within this period.

2.5 Principles of lipid qualification and quantification

With our in-house database MWDB, lipids were annotated based on its retention time and ion-pair infor-
mation fromMRMmode. In MRMmode, the first quadrupole screens the precursor ions for target substance
and excluded ions of other molecular weights. After ionization induced by the impact chamber, the precursor
ions were fragmented, and a characteristic fragment ion was selected through the third quadrupole to exclude
the interference of other non-target ions. By selecting a particular fragment, quantification is more accurate
and reproducible.

Fig 2:
Schematic diagram of multiple reaction monitoring mode by mass spectrometry
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3 Evaluation of data results

3.1 Data pre-processing

Analyst 1.6.3 was used to process mass spectrum data. The following figure shows the total ions current
(TIC) and MRM lipid detection multi-peak diagram (XIC) of the mixed QC samples. The X-axis shows
the Retention time (RT) from lipid detection, and the Y-axis shows the ion flow intensity from ion detection
(intensity unit: CPS, count per second).

Fig 3: Total ion current diagram of one sample

Final Report/0.data/QC/*QC_MS_TIC.png

Fig 4: Multi-peak diagram of MRM lipid detection

Final Report/0.data/QC/*MRM_detection_of_multimodal_maps*
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We corrected the mass spectrum peak of each lipid in different samples according to the retention time
and peak distribution information to ensure the accuracy in the analysis. The following figure shows the
correction results from a randomly selected lipid in different samples. The X-axis of each sub-plot is the
retention time (min), and the Y-axis of each sub-plot is the ion current intensity (CPS) of a lipid ion fragment.

Fig 5: Scoring correction diagram for quantitative analysis of lipids
Note: The peak area represents the relative content of the substance in the sample.

Final Report/0.data/picture/*Integral_correction.png

3.1.1 Quantification Results

Quantification is calculated based on the calibration curve equation:
The lipid content in the sample was calculated by the formula: X = 0.001*R*c*F*V /m
X:Content of lipids in the sample (nmol/g);

R:The ratio of the peak area of the substance to be measured to the peak area of the internal standard
(Area Ratio);

F:Internal standard correction factors for different types of substances;
c:Concentration of internal (μmol/L);

V:Extraction solution for samples (μL);
m:Weighed sample size (g);
The absolute quantitative results of a few samples in this project are shown in the following table.
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Table 5: Statistical Table of lipid quantity

Index A2 A3

LIPID-N-0001 1.30845 0.929612
LIPID-N-0010 0.719581 0.963375
LIPID-N-0014 0.323411 0.675464
LIPID-N-0015 0.758068 1.48059
LIPID-N-0017 0.432447 0.271496
LIPID-P-1600 22.5106 26.1192
LIPID-P-1599 21.7128 14.4088
LIPID-P-1598 27.8511 18.9142
LIPID-P-1594 36.0775 34.4951
LIPID-P-1593 6.62496 5.9616

Final Report/0.data/*level.xlsx

3.2 Quality control sample analysis

3.2.1 Total ion flow chromatogram

A quality control (QC) sample was prepared from a mixture of all sample extracts to analyze the repro-
ducibility of the entire lipidomics process. During data collection, one quality control sample was inserted
for every 10 test samples.

Fig 6: TIC overlap diagram detected by QC sample essence spectrum
Note: Superimposed spectrum from different QC samples. The results showed that
the spectrum of total ion flow were highly consistent indicating that the signal sta-
bility was good when the same sample was detected at different times by mass spec-
trometry.

Final report/0.data/picture/*QC_MS_tic_overlap*
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3.2.2 QC Sample correlation assessment

Pearson correlation analysis was performed on QC samples. The closer the | r | to 1, the higher the
correlation between two samples. The correlation results can be seen in the figure below.

Fig 7: Correlation diagram between QC samples
Note: Diagonal squares represent QC samples name; Left diagonal box represent
scatter diagram of QC samples . Both x-axis and y-axis are represent lipid content.
Each dot in the diagram represents a lipid. Right diagonal box represent correlation
coefficients of QC samples .

Final report/1.Data_Assess/pcc/*mix*

3.2.3 CV value distribution of all samples

The Coefficient of Variation (CV) value is the ratio between the standard deviation of the original data
and the mean of the original data, which can reflect the degree of data dispersion. The Empirical Cumulative
Distribution Function (ECDF) was used to analyze the frequency of compound CVs that is smaller than the
reference value. The higher the proportion of compounds with low CV value in the QC samples, the more
stable the experimental data. As a rule of thumb, the proportion of compounds with CV value less than 0.5 in
the QC samples is higher than 85% indicates that the experimental data is relatively stable. The proportion of
compounds with CV value less than 0.3 in the QC samples is higher than 75% indicates that the experimental
data is very stable.
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Fig 8: CV distribution of each group
Note: the X-axis represents the CV value, the Y-axis represents the proportion of
compounds. Different colors represent different sample groups. QC indicates quality
control samples. The two dash lines on X-axis correspond to 0.3 and 0.5; the two
dash line on Y-axis correspond to 75% and 85%.

Final report/1.Data_Assess/CV/*ECDF*

3.3 Principal Component Analysis (PCA)

3.3.1 Principles of principal component analysis

Multivariate statistical analysis can simplify complex high-dimensional data while preserving the origi-
nal information to the maximum extent by establishing a reliable mathematical model to summarize the char-
acteristics of the metabolic spectrum. Among them, Principal Component Analysis (PCA) is an unsupervised
pattern recognition method for statistical analysis of multidimensional data. Through orthogonal transforma-
tion, a group of variables that may be correlated are converted into a group of linear unrelated variables that
are called principal components. This method is used to study how a few principal components may reveal the
internal structure of between multiple variables, while keeping the original variable information (Eriksson et
al., 2006). The first principal component (PC1) represents the most variable features in the multidimensional
data matrix, PC2 represents the second most variable feature in the data, and so on. The prcomp function of
R software (www.r-project.org/) was used with parameter scale=True indicating unit variance Scaling (UV)
for normalizing the data. See appendix for details of PCA calculation.

3.3.2 Principal component analysis of the sample populations

Principal component analysis (PCA) was performed on all the samples (including QC samples) to exam-
ine the overall metabolic differences between each group and the variation between samples within a group.
QC is the Quality control sample mentioned above. PCA plot for the first two principal components is as
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follows:

Fig 9: PCA score
diagram of quality spectrum data of each group of samples and quality control sample
Note: PC1 represents the first principal component, PC2 represents the second prin-
cipal component, and PC3 represents the third principal component. Percentage rep-
resents the interpretation rate of the principal component to the data set. Each dot in
the figure represents a sample, and samples in the same group are indicated in the
same color.

Final report/1.Data_Assess/*all_pca*

3.3.3 Principal component univariate statistical process control

We plotted the sample order chart based on principle component analysis results. Each point in the
order chart represents a sample, and the X-axis is the injection order of the sample. Due to changes in the
instrument, the points on the chart may fluctuate up and down. Generally, PC1 of the QC sample should be
within 3 standard deviations (SD) from the normal range.
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Fig 10: PC1 control diagram of population sample
Note: In the figure, the X-axis is the injection order of the sample, and the Y-axis
reflects the PC1 value. The yellow and red lines define plus orminus 2 and 3 standard
deviations respectively. The green dots represent QC samples and the black dots
represent test samples.

Final report/1.Data_Assess/pca/*PC1_QCC*

3.4 Hierarchical Cluster Analysis

3.4.1 Principles of cluster analysis

Hierarchical Cluster Analysis (HCA) is a type of multivariate statistical analysis method. The samples
are classified according to their features such that highest homogeneity is achieved between sample from the
same group and highest heterogeneity is achieved between samples from different groups. In this report, the
compound quantification data was normalized (Unit Variance Scaling, UV Scaling) and heatmaps were drawn
by R software Pheatmap package. Hierarchical Cluster Analysis (HCA) was used to cluster the samples.

13



3.4.2 Hierarchical Cluster Analysis results

Fig 11: Sample clustering diagram
Note: X-axis indicates the sample name and the Y-axis are the lipids. Group in-
dicates sample groups. Z-Score indicates the relative quantification of each lipid
with red representing higher content and green representing lower content. Clus-
ter analysis was performed on both lipids (verticle cluster tree) and samples (hori-
zontal cluster tree). ”all_heatmap_class”: Heat map based on lipid classification;
”all_heatmap_no_cluster”: Showing only heatmap.

Final report /1.Data_Assess/*all_heatmap*

4 Analysis of data results

4.1 Lipid composition analysis

Lipid composition analysis is one of the main components of lipid data analysis. The Lipid Metabolic
Pathways Research Program consortium classifies lipids into eight major groups: fatty acyl, glycerolipids,
glycerophospholipids, sphingolipids, sterolipids, isopentenolipids, glycolipids, and polyketides. Lipids can
be further classified into various subclasses depending on the polar head group or other properties. The
following table shows the number of lipid compounds in each detected subclasses.
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Table 6: Number of lipids identified in each subclass

Class all_sample A B

BA 5 5 5
BMP 19 19 19
CAR 18 18 18
CE 4 4 4
Cer-AP 11 11 11
Cer-AS 4 4 4
Cer-NDS 7 7 7
Cer-NP 9 9 9
Cer-NS 33 33 33
CerP 4 4 4

Final report/1.Data_Assess/Class_Count.xlsx

The same statistics is shown in the following figure.

Fig 12: Histogram of the number of lipids identified in each subclass

Final report/1.Data_Assess/Class_Count/Class_Count_Bar.png
Lipid composition is sample-specific and varies between samples. The analysis of lipid composition

ratios can examine the distribution of major lipids in the samples. The following ring figure shows the lipid
subclass composition for each group.
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Fig 13: Loop diagram of lipid subclass composition
Note: Each color represents a lipid subclass, and the area of the color block indicates
the proportion of that subclass.

Final report/1.Data_Assess/Class_Count/Class_Count_Ring_*.png

4.2 Subclass level analysis

4.2.1 Changes in total lipid abundance

Lipid abundance is the total quantification of all lipids in the sample. The total lipid abundance between
the samples from different groups is shown below.

Fig 14: Change in total lipid molecule content
Note: The horizontal coordinates indicate the different groups; the vertical coordi-
nates indicate the total lipid abundance in different groups.

Final report/1.Data_Assess/Class_Content/All_Class_Content.png
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4.2.2 Changes in lipid abundance by lipid subclasses

The biological functions of different lipid subclasses are different. Changes in the lipid abundance of a
subclasses between sample groups are important information to identify important lipid subclasses that may
be involved in relevant biological processes for the observed phenotype. The following bar graph shows the
differences in lipid abundance of each subclass between sample groups.

Fig 15: Changes in lipid subclass content

Final report/1.Data_Assess/Class_Content/Class_Content.png
To facilitate subsequent in-depth data analysis, each lipid subclass is plotted separately.

Fig 16: Differences in the content of lipid subclasses between groups

Final report/1.Data_Assess/Class_Content/Class_Content_*.png

A radar chart is a graphical method of displayingmultivariate data in the form of a two-dimensional chart
with three or more variables on an axis starting from the same point. The figure below shows the changes in
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lipid abundance of each subclass.

Fig 17: Radar of changes in lipid subclass content

Final report/1.Data_Assess/Radarchart/*

4.2.3 Dynamic distribution of lipids

The dynamic range of lipid distribution allows the examination of the least and the most abundant lipids
in each group, as well as the variation of lipid abundances across the entire abundance range.

Fig 18: Dynamic distribution of lipid content
Note: Each point in the graph represents a lipid molecule. The vertical coordinate
represents the corresponding abundance of each lipid molecule (log10), and the lipid
molecule with the lowest and highest content is labeled. Different color represent
different sample groups.

Original file path/1.Data_Assess/distribution/*
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4.3 Analysis of lipid chain length and unsaturation

4.3.1 Chain length analysis

The chain length is the number of the carbon atoms in a fatty acid chain, and it is closely related to lipid
function. Chain length can affect cell membrane thickness, fluidity of the cell membrane, and the activity
and function of lipid transport proteins. We analyzed the abundance of lipids with the same chain length and
examined the differences between lipids with different chain length.

Fig 19: Analysis of chain length
Note: The horizontal coordinates indicate the different carbon chain lengths and the
vertical coordinates indicate the abundance of lipid compounds.

Final report/1.Data_Assess/Class_Length/*

4.3.2 Differences in chain length

This analysis shows the fold change of lipids with different chain lengths between sample groups.
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Fig 20: Analysis of differences in chain length
Note: The horizontal coordinates represent the carbon chain length, the vertical coor-
dinates represent the differential expression multiples, each point represents a lipid,
the size of the point represents the P-value, the larger the point means the smaller the
P-value.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/Carbons/*

4.3.3 Chain unsaturation analysis

Chain unsaturation is the number of double bonds in the fatty acid chain. This analysis shows the abun-
dance of lipid compounds with the same number of unsaturated bonds between sample groups.

Fig 21: Analysis of chain unsaturation
Note: The horizontal coordinate indicates the number of unsaturated bonds and the
vertical coordinate indicates the abundance of lipid compounds.

Final report/1.Data_Assess/Class_Unsaturated/Class_Unsaturated_*.png
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4.3.4 Differences in chain unsaturation

This analysis shows the fold change of lipids with different chain unsaturations between sample groups
.

Fig 22: Analysis of differences in chain unsaturation
Note: The horizontal coordinate represents the carbon chain unsaturation, the verti-
cal coordinate represents the differential expression multiplier, each point represents
a lipid, the size of the point represents the P value, the larger the point means the
smaller the P value.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/doubleBond/*

4.4 Principal component analysis of sample groups

4.4.1 Principal component analysis between sample groups

Principal component analysis was first performed on each pair of sample groups to examine the degree
of variation between different groups and between samples within the group.
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Fig 23: Principal component analysis of different groups
Note: Each group has a PCA plot, PC1 represents the first principal component,
PC2 represents the second principal component, and the percentages on the axis
represents the interpretation rate of the principal component to the data set. Each dot
in the figure represents a sample, samples in the same Group are represented by the
same color, and Group is a grouping.

The three-dimentional PCA result is shown in the figure below:

Fig 24: Three-dimensional PCA plot of different groups
Note: PC1 represents the first principal component, PC2 represents the second prin-
cipal component, and PC3 represents the third principal component.

The explainable variation of the first five principal components is shown in the figure below:
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Fig 25: The explainable variation of the first five principal components
Note: The X-axis represents each principal component, the Y-axis represents the
explainable variation, the left figure represents the cumulative explainable variation,
and the right figure represents the explainable variation of each principal component.

Principal component analysis of different groups:Original file path: Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/pca/group-ID*_vs_group-ID*_pca.*;

Three-dimensional PCAplot of different groups:Original file path: Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/pca/group-ID*_vs_group-ID*_pca3D.*;

The explainable variation of the first five principal components: Original file path: Final re-
port/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/pca/group-ID*_vs_group-ID*_pcaVar.*;

4.5 Discriminant Analysis by Orthogonal Partial Least Squares (OPLS-DA)

PCA analysis is often insensitive to variables with small correlation. In contrast, partial least squares-
discriminant analysis (PLS-DA) is a multivariate statistical analysis method with supervised pattern recog-
nition, in which components in independent variable X and dependent variable Y are extracted to calculate
the correlation between components. Compared with PCA, PLS-DA can maximize the difference between
groups and facilitate the search for differential lipids. Orthogonal partial least squares discriminant analysis
(OPLS-DA) combines orthogonal signal correction (OSC) and PLS-DA method, which can decompose the
x-matrix information into two types (1. information related to Y and 2. irrelevant information) and filter the
differential variables by removing the irrelevant differences.

The OPLSR.Anal function in the R package MetaboAnalystR was used for this analysis. The following
table shows a partial result from the OPLS-DA model:
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Table 7: Partial results of OPLS-DA

Index Compounds Type

LIPID-N-0001 taurolithocholicacid-3-sulfate up
LIPID-N-0010 Ursocholicacid up
LIPID-N-0014 lithocholicacid-3-sulfate insig
LIPID-N-0015 Glycocholicacid up
LIPID-N-0017 Taurocholicacid down
LIPID-P-1600 BMP(18:2_22:5) insig
LIPID-P-1599 BMP(18:1_22:6) insig
LIPID-P-1598 BMP(18:2_20:5) insig
LIPID-P-1594 BMP(18:1_22:5) insig
LIPID-P-1593 BMP(18:2_20:4) insig

Original file path: The calculation results of all lipids of OPLS-DA were compared in groups: /2.Ba-
sic_analysis/Difference_analysis/group-ID*_vs_group-ID*/group-ID*_vs_group-ID*_info.xlsx.

4.5.1 Principles of OPLS-DA model

During OPLS-DA modeling, the X matrix information is decomposed into information related to Y
and information unrelated to Y. Among them, the variable information related to Y is the predicted principal
component, and the information unrelated to Y is the orthogonal principal component (Thevenot et al., 2015).

Fig 26: OPLS-DA score diagram
Note: the X-axis represents the predicted principal component, and the difference
between groups can be seen in the horizontal direction. The Y-axis represents the or-
thogonal principal component, and the vertical direction shows the difference within
the group. Percentage indicates the degree to which the component explains the
data set. Each dot in the figure represents a sample, samples in the same group are
represented by the same color, and Group indicates sample groups.

Original file path:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/opls/group-
ID*_vs_group-ID*_opls_score.*.
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4.5.2 OPLS-DA model validation

The OPLS-DA model was used to analyze metabolome data and draw score charts for each group to
further show the differences between each group (Thevenot et al., 2015). The prediction parameters of the
evaluation model are R2X, R2Y and Q2, where R2X and R2Y represent the explanatory rate of the model to
X and Y matrix respectively, and Q2 represents the prediction ability of the model. The closer these three
indicators are to 1, the more stable and reliable the model is. Q2 > 0.5 can be considered as an effective model,
and Q2 > 0.9 can be considered as an excellent model.

The horizontal coY-axis represents the model accuracy, and the vertical coY-axis is the frequency of the
model classification effect. The model performs bootstrapping 200 times and if Q2’s P = 0.02, it indicates
that the prediction ability of four random grouping models is better than that of the OPLS-DA model in the
Permutation detection. If R2Y’s P = 0.545, it indicated that there were 109 random grouping models in the
Permutation detection, whose explanation rate of Y matrix was better than that of the OPLS-DA model. In
general, p < 0.05 is the best model.

Fig 27: OPLS-DA verification diagram

Original file path:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/opls/group-
ID*_vs_group-ID*_opls_permutation.*.

4.5.3 OPLS-DA S-plot

During OPLS-DA modeling, the X matrix information is decomposed into information related to Y
and information unrelated to Y. Among them, the variable information related to Y is the predicted principal
component, and the information unrelated to Y is the orthogonal principal component (Thevenot et al., 2015).
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Fig 28: OPLS-DA S-plot

Original file path:Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/opls/group-
ID*_vs_group-ID*_opls_splot.*.

4.5.4 Dynamic distribution of lipid abundance differences

To show the overall lipid abundance distribution in the samples, lipids were sorted and plotted based on
fold-change values from small to large. The distribution of the ranked lipids is shown below with the top 10
up-regulated and top 10 down-regulated lipids labelled.

Fig 29: Dynamic distribution of lipid content differences
Note: In the figure, the X-axis represents the rank number of lipids based on FC
value. The Y-axis represents the log_2FC value. Each point represents a lipid com-
pound. The green points represent the top 10 down-regulated lipids and the red points
represent the top 10 up regulated lipids.

26



Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/distribution/group-
ID*_vs_group-ID*fc_distribution*

4.6 Differential lipid screening

It is often necessary to combine univariate statistical analysis andmultivariate statistical analysis for large
high dimensional datasets such as metabolomics datasets to accurately identify differential lipids. Univariate
statistical analysis methods include parametric test and nonparametric test. Multivariate statistical analysis
methods include principal component analysis and partial least square discriminant analysis. Based on the
results of OPLS-DA (biological repetition ≥ 3), multivariate analysis of Variable Importance in Projection
(VIP) from OPLS-DA modeling was used to preliminarily select differential lipids from different samples.
Differential lipids can further be screened by combining the P-value/FDR (when biological replicates ≥ 2) or
FC values from univariate analysis. The screening criteria for this project are as follows:

For two sets of comparisons:

1.Metabolites with VIP > 1 were selected. VIP value represents the effect of the differences between
groups for a particular lipid in various models and sample groups. It is generally considered that the
lipids with VIP > 1 have significant difference.

2.Metabolites with P-value < 0.05 were considered as significant.

Partial result from the screening are shown below:

Table 8: Screening results of differential lipids

Index Compounds Type

LIPID-N-0001 taurolithocholicacid-3-sulfate up
LIPID-N-0010 Ursocholicacid up
LIPID-N-0015 Glycocholicacid up
LIPID-N-0017 Taurocholicacid down
LIPID-P-1577 BMP(22:5_22:6) up
LIPID-P-1574 BMP(20:5_22:6) down
LIPID-P-1572 BMP(20:4_22:6) down
LIPID-P-1589 BMP(18:1_20:4) down
LIPID-P-1591 BMP(18:1_22:4) up
LIPID-P-1604 BMP(20:4_22:4) down

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/group-ID*_vs_group-
ID*filter.xlsx.

4.6.1 Bar chart of differential lipids

The following figure shows the result of top 20 differentially expressed lipids in each comparison with
fold-change value shown as log2 values.
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Fig 30: Bar chart of differential lipids
Note: X-axis refers to log_2 values of top differential lipids, the Y-axis refers to
lipids. Red bars represent up-regulated differential lipids and green bars represent
down-regulated differential lipids.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/TopFcMetabolites/group-
ID*_vs_group-ID*_TopFcMetabolites.*

4.6.2 Radar map of differential lipids

The top 10 differential lipids based on absolute value of Fold-change were selected and plotted on the
radar plot.

Fig 31: Differential lipid radar map
Note: The grid lines correspond to the log_2FC,The green colored area are formed
from the lines connecting the dots

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/radarchart/*radarchart**
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4.6.3 VIP values of differential lipids

The top 50 lipids with the largest VIP value from the OPLS-DA model were selected and plotted.

Fig 32: VIP values of differential lipids
Note: The X-axis represents VIP values, and the Y-axis represents lipids. Red dots
represent up-regulated differential lipids, and green dots represent down-regulated
differential lipids.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/vipscore/group-ID*_vs_group-
ID*_vipScore.*.

4.6.4 Volcanic plot of differential lipids

Volcano Plot is used to show the relative differences and the statistical significance of lipids between
two groups. We provided the volcano plot of differential lipids using different selection criteria for your
consideration. The details of different selection criteria are described in the README document under the
volcano plot directory. In addition, the attached results also provided an interactive web version of the volcano
plot where you can examine the details of each lipid.
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Fig 33: Volcanic plot of differential lipids
Note: Under VIP + FC + Pvalue/FDR triple screening conditions,the horizontal co-
ordinate represents the multiple change of difference of lipids in different groups
(log_2FC), and the vertical coordinate represents the significance level of difference
(-log_10P-value).Each point in the volcano diagram represents a lipid. Significantly
up-regulated lipids were represented by red dots,significantly down-regulated lipids
were represented by green dots, and the size of the dots represented VIP values

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/vol/*vol_*

4.6.5 Scatter plot of differential lipids

The differential lipids scatter plot is mainly used to show the abundance differences in compound sub-
classes between two groups.
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Fig 34: Scatter plot of differential lipids
Note: Each dot in the graph indicates a lipid, and different colors indicate differ-
ent lipid subclasses; the horizontal coordinate indicates the logarithmic value of
the multiplicative difference in the content of a substance in two groups of samples
(log_2FC), the larger the absolute value of the horizontal coordinate, the greater the
difference in the content of the substance between the two groups of samples, and
the size of the dot represents the VIP value.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/Scatter/*

4.6.6 Hierarchical clustering tree of samples

Hierarchical clustering was performed on different sample groups to form a clustering tree showing the
similarity between samples. Samples in the same cluster have higher similarity.

Fig 35: Hierarchical clustering tree of samples
Note: Samples with higher similarity are clustered more closely on the clustering
tree.
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Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/dendrogram/*dendrogram*

4.6.7 Heatmap of differential lipids

In order to observe the fold-change of differential lipids more intuitively, we normalized the relative
quantification using unit variance scaling (UV scaling, see appendix for details of calculation formula) and
plotted the results on a heatmap using pheatmap in R.

Fig 36: Heatmap of differential lipids
Note: The X-axis shows the name of the samples and the Y-axis shows the differ-
ential lipids. Different colors in the heatmap represent the values obtained after UV
scaling and reflects the level of relative quantification. The darker the red, the higher
the quantification. In contrast, the darker the green, the lower the quantification. The
colored bar on top depicts sample groups. If hierarchical clustering is performed, the
clustering tree will be shown on the left or on the top. If classification was performed
on the compounds, a colored bar will be shown on the left to depict Level 1 classifi-
cations.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/heatmap/group-ID*_vs_group-
ID*_heatmap.*;

4.6.8 Z-value map of differential lipids

Z-score standardization normalizes the relative content of the differential lipids by calculating Z-scores.
The Z-score is calculated by z = (x - µ) / σ; Where x is a specific score, µ is the mean, and σ is the standard
deviation. The Z-score plot provides a visual representation of the distribution of each differential lipid across
groups. The colored dots in the plot represent samples of different groups.
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Fig 37: Z-value map of differential lipids
Note: The X-axis represents the z-score and the Y-axis represents the differential
lipids. The colored dots in the plot represent samples of different groups. If there
are more than 50 differential lipids, the figure will only show the top 50 lipids based
on VIP.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/zScore/group-ID*_vs_group-
ID*_zScore.*.

4.6.9 Correlation analysis of differential lipids

Lipids may act synergistically or in mutually exclusive relationships amongst each other.The correlation
analysis can help measure the metabolic proximities of significantly different lipids. This analysis will help
further understand the mutual regulatory relationship between lipids in the biological process. Pearson cor-
relation was used to perform correlation analysis on the differential lipids identified based on the screening
criteria described previously.
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Fig 38: Heat map of correlation of different lipids
Note: The ID of the lipids are shown on both horizontal and verticle axses. The
colors represent the Pearson correlation coefficient (r) with the scale seen on the
right (The darker the red, the stronger the positive correlation; the darker the green
the stronger the negative correlation). If there are more than 50 differential lipids,
the figure will only show the top 50 lipids based on VIP.

Differential lipid correlation heat map: Final report/2.Basic_analysis/Difference_analysis/group-
ID*_vs_group-ID*/cpdCorr/group-ID*_vs_group-ID*_raw_cpdCorr_*.*;

Fig 39: Chord diagram of differential lipids
Note: The outermost layer shows the lipid ID. The second layer shows log_2FC
value. The larger the dot,the larger the log_2FC value; The color for the first and
second layer represent Level 1 classification. The chords in the inner most layer
reflect the Pearson correlation between the connected lipids. Red chords represent
positive correlation and the blue chords represent negative correlation. Only lipids
with |r| ≥ 0.8 and p < 0.05 are plotted.
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Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/cpdCorr/group-ID*_vs_group-
ID*_cpdCorrCir_*.*;

Fig 40: Correlation network diagram of differential lipids
Note: The dots in the figure represent the various differential lipids, and the size
of the dot is related to the Degree of connection. The larger the dot, the greater
the Degree of connection, i.e. the more dots (neighbors) connected to it. Red lines
represent positive correlations and blue lines represent negative correlations. Line
thickness represent the absolute value of Pearson correlation coefficient. The larger
the |r|, the thicker the line. If there are more than 50 differential lipids, the figure will
only show the top 50 lipids based on VIP.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/cpdCorr/*network*

4.6.10 Violin plot of differential lipids

A violin plot is a combination of a box plot and a density plot, mainly used to show the data distribution
and its probability density. The box plot in the middle show the interquartile range, the thin black line extend-
ing from it represents the 95% confidence interval, the black horizontal line right in the middle is the median,
and the outer shape indicates the density of the data distribution. The following figure shows the result of top
50 differentially compounds.
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Fig 41: Violin plot of differential lipids
Note: The horizontal coordinate is the grouping and the vertical coordinate is the
relative content of the differential lipids (raw peak area). If there are more than 50
differential lipids, the figure will only show the top 50 lipids based on VIP.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/fullViolin/group-ID*_vs_group-
ID*_fullViolin_Raw.*;

4.6.11 K-means analysis

K-means analysis is amethod to examine the trend of relative quantification changes of a lipid in different
sample groups. K-means is performed based on the UV（Z-score) standardized relative quantification value.

Fig 42: K-Means diagram of differential lipids
Note: The X-axis represents the sample grou and the Y-axis represents the normal-
ized relative quantification. ”Sub class” represents a group of lipids with the same
trend and the number represent the number of lipids in this cluster.
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Final report/2.Basic_analysis/kmeans/kmeans_cluster.*

4.7 Functional annotation and enrichment analysis of differential lipids with KEGG
database

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database that integrates compounds and genes
into metabolic pathways. The KEGG database enabled researchers to study genes with their expression in-
formation and compounds with its abundances as a complete network.

4.7.1 Functional annotation of differential lipids

Lipids are annotated using the KEGG database (Kanehisa et al., 2000), and only metabolic pathways
containing differential lipids are shown. Detailed results are found in the attached results. A portion of the
results is shown below:

Fig 43: KEGG pathway of lipids
Note: Red circles indicate that the lipid content was significantly up-regulated in the
experimental group; blue circles indicate that the lipid content was detected but did
not change significantly; green circles indicate that the lipid content was significantly
down-regulated in the experimental group; and orange circles indicate a mixture of
both up- and down-regulated lipids.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/Graph/ko*.
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Table 9: KEGG annotations for differential lipids

Index Compounds Type cpd_ID

LIPID-N-0001 taurolithocholicacid-3-sulfate up C03642
LIPID-N-0010 Ursocholicacid up C17644
LIPID-N-0015 Glycocholicacid up C01921
LIPID-N-0017 Taurocholicacid down C05122
LIPID-P-1577 BMP(22:5_22:6) up -
LIPID-P-1574 BMP(20:5_22:6) down -
LIPID-P-1572 BMP(20:4_22:6) down -
LIPID-P-1589 BMP(18:1_20:4) down -
LIPID-P-1591 BMP(18:1_22:4) up -
LIPID-P-1604 BMP(20:4_22:4) down -

Table 10: Enrichment Statistics of KEGG annotations for differential lipids

ko_ID Sig_compound compound Sig_compound_all compound_all

ko04976 4 8 275 499
ko00120 3 3 275 499
ko01100 233 419 275 499
ko04979 45 74 275 499
ko00430 1 1 275 499
ko04714 57 91 275 499
ko00600 39 66 275 499
ko04071 35 57 275 499
ko04217 29 51 275 499
ko04722 15 21 275 499

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_filter_kegg.xlsx.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_KEGG.xlsx.

4.7.2 KEGG classification of differential lipids

The significant differential lipids were classified based on pathway annotation. The results are as fol-
lows:
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Fig 44: KEGG classification of differential lipids
Note: the Y-axis shows the name of the KEGG pathway. The number of lipids and
the proportion of the total lipids are shown next to the bar plot.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID_KEGG_barplot.*.

4.7.3 Hierarchical Cluster Analysis of differential lipids in KEGG signaling pathway

We clustered the compounds in each pathway base on their quantification in order to examine the pattern
of lipid changes in different sample groups. Only pathways with at leaset 5 differential compounds were
analyzed.
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Fig 45: Clustering heat map of differential lipids in KEGG pathway
Note: The X-axis shows the name of the samples and the Y-axis shows the differen-
tial lipids. Different colors in the heatmap represent the values obtained after normal-
ization and reflects the level of relative quantification. The darker the red, the higher
the quantification. In contrast, the darker the green, the lower the quantification. The
colored bar on top depicts sample groups. If hierarchical clustering is performed, the
clustering tree will be shown on the left. If classification was performed on the lipids,
a colored bar will be shown on the left to depict compound classifications.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID_KEGG_heatmap.*.

4.7.4 KEGG enrichment analysis of differential lipids

KEGG pathway enrichment analysis was conducted based on the annotation results. We calculated the
Rich Factor for each pathway, which is the ratio of the number of differential lipids in the corresponding
pathway to the total number of lipids annotated in the same pathway. The greater the value, the greater the
degree of enrichment. P-value is calculated using hypergeometric test as shown below:

𝑃 = 1 −
𝑚−1
∑
𝑖=0

(𝑀𝑖 )(𝑁−𝑀𝑛−𝑖 )
(𝑁𝑛)

N represents the total number lipids with KEGG annotation, n represents the number of differential lipids
in N, M represents the number of lipids in a KEGG pathway in N, and m represents the number of differential
lipids in a KEGG pathway in M. The closer the p-value is to 0, the more significant the enrichment. The size
of the dots in the figure represents the number of significantly different lipids enriched in the corresponding
pathway. The top 20 pathways in terms of P-value are plotted.
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Fig 46: KEGG enrichment diagram of differential lipids
Note: The X-axis represents the Rich Factor and the Y-axis represents the pathway.
The color of points reflects the p-value. The darker the red, the more significant the
enrichment. The size of the dot represents the number of enriched differential lipids.

Final report/2.Basic_analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/group-
ID*_vs_group-ID*_KEGG_Enrichment.*.

4.7.5 Overall changes in KEGG metabolic pathway

Differential Abundance Score (DA Score) is a score based on changes in lipids in a pathway. DA Score
can capture the overall changes of all differential lipids in a pathway with the following formula:

DA score=(up regulated lipids in a pathway-down regulated lipids in a pathway)/(Total number of lipids
annotation in a pathway)

The top 20 pathways in terms of P-value are plotted.
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Fig 47: Difference abundance score
Note: The Y-axis represents the name of differential pathway, and the X-axis repre-
sents DA Score. DA Score reflects the overall change of all lipids in the metabolic
pathway. A Score of 1 indicates that the expression trend of all identified lipids in
this pathway is up-regulated, and -1 indicates that the expression trend of all iden-
tified lipids in this pathway is down-regulated. The length of the line represent the
absolute value of DA-score while the size of the dot at the end of the line represent
the number of differential lipids. A dot on the left of the line represent the pathway is
down-regulated; a dot on the right of the line represents the pathway is up-regulated.
The color of the line and dot represent the P-value. The darker the red, the smaller
the P-value and the darker the purple, the larger the P-value.

Final report/2.Basic_Analysis/Difference_analysis/group-ID*_vs_group-ID*/enrichment/*DA_score*.

4.8 ROC curve analysis of differential lipids

The ROC curve (Receiver Operating Characteristic Curve) is a quantitative method to measure the per-
formance of a classification model. By default, ROC curve analysis is performed when the sample size is
greater than 30.
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Fig 48: ROC curves for differential lipids
Note: The horizontal coordinate is 1 - specificity, i.e. false positive rate, false pos-
itive rate = false positive/(false positive + true negative); the vertical coordinate is
sensitivity, i.e. true positive rate, true positive rate = true positive/(true positive +
false negative).The area between the ROC curve and the horizontal coordinate is the
Area Under Curve (AUC), which is the quantitative evaluation index of the ROC
curve.The range of AUC is (0.5, 1], and the closer it is to 1, the better the predic-
tion of the model. The text in red is the AUC value and 95% confidence interval
of the curve; the text in black is the optimal threshold value, and the specificity and
sensitivity are in parentheses.

Original file path/2.Basic_Analysis/Difference_analysis/NC_vs_BT/ROC/*ROC*
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6 Appendix

6.1 分析方法英文版

1.PCA

Unsupervised PCA (principal component analysis) was performed by statistics function prcomp within
R (www.r-project.org). The data was unit variance scaled before unsupervised PCA.

2.Hierarchical Cluster Analysis and Pearson Correlation Coefficients
The HCA (hierarchical cluster analysis) results of samples and lipids were presented as heatmaps with

dendrograms, while pearson correlation coefficients (PCC) between samples were caculated by the cor func-
tion in R and presented as only heatmaps. Both HCA and PCC were carried out by R package pheatmap. For
HCA, normalized signal intensities of lipids (unit variance scaling) are visualized as a color spectrum.

3. Differential lipids selected
For two-group analysis, differential lipids were determined by VIP (VIP > 1) and P-value (P-value <

0.05, Student’s t test). VIP values were extracted from OPLS-DA result, which also contain score plots and
permutation plots, was generated using R package MetaboAnalystR. The data was log transform (log2) and
mean centering before OPLS-DA. In order to avoid overfitting, a permutation test (200 permutations) was
performed.

4.KEGG annotation and enrichment analysis
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Identified lipids were annotated using KEGG Compound database (http://www.kegg.jp/kegg/
compound/), annotated lipids were then mapped to KEGG Pathway database (http://www.kegg.jp/kegg/
pathway.html). Pathways with significantly regulated lipids mapped to were then fed into MSEA (lipid sets
enrichment analysis), their significance was determined by hypergeometric test’s p-values.

6.2 List of software and versions

Table 11: Software used

Analysis Software Version

PCA R (base package) 3.5.1
Pearson Correlation R (base package; Hmisc) 3.5.1; 4.4.0
Inter-sample correlation plots R (corrplot) 0.84
Heatmap R (heatmaply; ComplexHeatmap) 1.2.1; 2.7.1.1009
OPLS-DA R (MetaboAnalystR) 1.0.1
Radar map R (fmsb) 0.7.0
Chord diagram R (igraph; ggraph) 1.2.4.2; 2.0.2
Correlation network diagram R (igraph) 1.2.4.2
Modulation network diagram R (FELLA) 1.10.0

In all the analyses of this project, two main approaches were taken to pre-process the data, which were
calculated as follows:
(1) unit variance scaling (UV)

unit variance scaling (UV) also known as Z-score normalization / auto scaling, is amethod of normalizing
data based on the mean and standard deviation of the original data. The processed data conforms to a standard
normal distribution with a mean of 0 and a standard deviation of 1.

Calculation method:Original data centering divided by the standard deviation of the variable.
The formula is as follows:

𝑥′ = 𝑥 − 𝜇
𝜎

µ is the mean value and σ is the standard deviation.
(2) Zero-centered (Ctr)

Calculation method:Original data minus the mean value of the variable.
The formula is as follows:

𝑥′ = 𝑥 − 𝜇
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