Widely-Targeted Metabolomics is an innovative metabolomics method that combines the benefits of untargeted metabolomics and targeted metabolomics to achieve high-throughput identification and precise quantitation of large number of metabolites. This methodology is especially useful in plant metabolism research where the number of metabolites far exceeds those in animals. At Metwarebio, our Widely-Targeted Metabolomics approach stands out from many others with features such as:

Large Curated Database

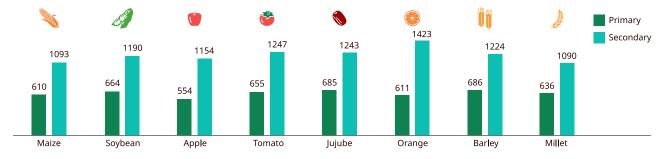
Over **30,000** purified chemical standards from over **1000** plant species.

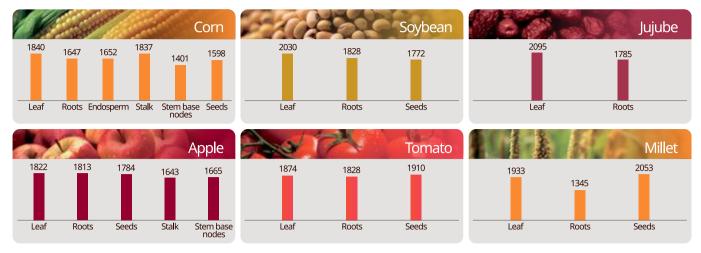
Precise Quantitation

Using the **QQQ** gold standard detection mode (MRM) and 10 rigorous QC indicators

Accurate Identification

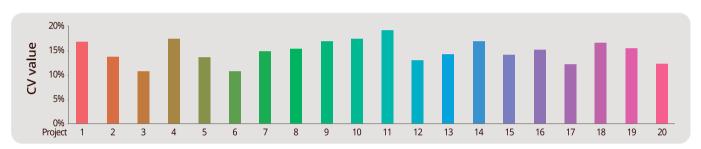
Combining AB SCIEX Q-TOF 6600 ultra-high resolution mass spectrum with our in-house curated database to achieve accurate metabolite identification.




High Quality Data

Results of our services have been cited in over **500** publications.

In-house Plant Metabolites Database


Types	Number	Representative compounds	
Flavonoids	3700+	Rutin, Phloretin, Phelligrin A, Hesperetin, Pelargonidin-3-O-glucoside	
Phenolic acids	2100+	Chlorogenic acid, Momordicoside A, Oleuropein, Salvianolic acid A	
Alkaloids	7000+	α-Solanine, Verticine, Arecoline, DIMBOA, Lycorenine	
Terpenoids	8000+	Artemisinine, Genipin, Cucurbitacin B, Ecliptasaponin A	
Quinones 700+		Emodin, Obtusin, Lapachone, Shikonin, Tectograndone	
Steroid	1300+	Asparagoside C, Polyphyllin I, Tigogenin, Digitonin, Oleandrin	
Tannins	240+	Ellagic acid, Gemin D, Casuariin, Punicalin, Chebulagic acid	
ignans 1000+ Honokiol, Syringaresinol, Arctigenin, Pinoresinol, Sesamin		Honokiol, Syringaresinol, Arctigenin, Pinoresinol, Sesamin	
lucosinolates 150+ Sulforaphane, Gluconasturtiin, Sinalbin, Sinigrin		Sulforaphane, Gluconasturtiin, Sinalbin, Sinigrin	
Coumarins	800+	Umbelliprenin, Psoralen, Glycycoumarin, Xanthotoxol, Scopolin	
Organic acids	270+	Succinic acid, Malic acid, Citric Acid, Quinic Acid, Shikimic acid	
Vitamins	50+	Vitamin C, Vitamin B2, Vitamin A1, Vitamin U, Nicotinic acid	
Amino acids and derivatives	540+	Tryptophan, Theanine, Beauvericin, Dencichin, γ-Glu-Cys	
Nucleotides and derivatives	120+	Adenine, Cytosine, Thymine, Inosine, Adenosine 5'-monophosphate	
Saccharides and Alcohols	340+	340+ Glucose, Sucrose, Fucose, Xylitol, Maltose, Raffinose	
Lipids	500+	Linolenic acid, 4-Hydroxysphinganine, Lauric acid, Myristic Acid	
Others	3200+	Aflatoxin B1, Secoxyloganin, Kavain, Terreic acid, Mansonone E	
Total		30000+	

Number of metabolites detected across various tissues.

High Stability

Highly stable detection for the widely-targeted metabolic analysis.

Selected Publications

Year	Journal	Title	Species
2023	Ecotoxicology and Environmental Safety	Deciphering the toxicity mechanism of haloquinolines on Chlorella pyrenoidosa using QSAR and metabolomics approaches	
2023	Food Research International	Widely targeted metabolomic analysis revealed the effects of alkaline stress on nonvolatile and volatile metabolites in broomcorn millet grains	
2023	Food Chemistry	Impact of low temperature on the chemical profile of sweet corn kernels during post-harvest storage	
2022	Foods	Comparative Analysis of Fruit Metabolome Using Widely Targeted Metabolomics Reveals Nutritional Characteristics of Different Rosa roxburghii Genotypes	
2022	Food Chemistry	Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics	
2022	Postharvest Biology and Technology	Widely targeted metabolomics analysis reveals the effect of exogenous auxin on postharvest resistance to Botrytis cinerea in kiwifruit (Actinidia chinensis L.)	Kiwi Fruit
2022	Food Research International	Comparative metabolomics of flavonoids in twenty vegetables reveal their nutritional diversity and potential health benefits	
2021	Food Chemistry	Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen	
2021	LWT - Food Science and Technology	Widely targeted metabolomics characterizes the dynamic changes of chemical profile in postharvest peanut sprouts grown under the dark and light conditions	

